Advanced Search
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Xuguang LI, Bing LIU, Haipeng FU, Kaixue MA. A 130 GHz CMOS Active Vector-Modulation Phase Shifter[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1559-1564. doi: 10.11999/JEIT210071
Citation: Xuguang LI, Bing LIU, Haipeng FU, Kaixue MA. A 130 GHz CMOS Active Vector-Modulation Phase Shifter[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1559-1564. doi: 10.11999/JEIT210071

A 130 GHz CMOS Active Vector-Modulation Phase Shifter

doi: 10.11999/JEIT210071
Funds:  The National Key R&D Program of China (2018YFB2202500)
  • Received Date: 2021-01-21
  • Rev Recd Date: 2021-04-27
  • Available Online: 2021-05-14
  • Publish Date: 2021-06-18
  • A 130 GHz active Vector-Modulation (VM) phase shifter based on 55 nm CMOS process is presented for millimeter-wave phased array radar applications. A wideband quadrature generator, there stages variable gain amplifiers and a Gilbert-based summator are exploited in the proposed phase shifter. For improving the phase resolution and accuracy of the phase shifter, multi-stage wide gain-range variable gain amplifiers, which consists of stack common-gate amplifiers and the cascode amplifier based on capacitance neutralization technology, are employed. In addition, the Digital Controlled Artificial Dielectric (DiCAD) structure are also adopted in the proposed phase shifter to cover the phase gap result by VM structure. The full-wave electromagnetic simulation results show that the average gain of the proposed phase shifter is above 1 dB at 125 to 135 GHz. The phase shifting range can cover full 360°with a 5.6° phase step, and the RMS phase error is less than 4° at operating frequency range. The area of the phase shifter is 1100 μm×600 μm, and the power consumption is 33 mW.
  • loading
  • [1]
    贾海昆, 池保勇. 硅基毫米波雷达芯片研究现状与发展[J]. 电子与信息学报, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666

    JIA Haikun and CHI Baoyong. The status and trends of silicon-based millimeter-wave radar SoCs[J]. Journal of Electronics &Information Technology, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666
    [2]
    NATARAJAN A, KOMIJANI A, GUAN X, et al. A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting[J]. IEEE Journal of Solid-State Circuits, 2006, 41(12): 2807–2819. doi: 10.1109/JSSC.2006.884817
    [3]
    PANG Jian, LI Zheng, KUBOZOE R, et al. A 28-GHz CMOS phased-array beamformer utilizing neutralized Bi-directional technique supporting dual-polarized MIMO for 5G NR[J]. IEEE Journal of Solid-State Circuits, 2020, 55(9): 2371–2386. doi: 10.1109/JSSC.2020.2995039
    [4]
    JIA Haikun, KUANG Lixue, ZHU Wei, et al. A 77 GHz frequency doubling two-path phased-array FMCW transceiver for automotive radar[J]. IEEE Journal of Solid-State Circuits, 2016, 51(10): 2299–2311. doi: 10.1109/JSSC.2016.2580599
    [5]
    MENG Fanyi, MA Kaixue, YEO K S, et al. A 57-to-64-GHz 0.094-mm2 5-bit passive phase shifter in 65-nm CMOS[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(5): 1917–1925. doi: 10.1109/TVLSI.2015.2469158
    [6]
    WANG Bindi, GAO H, MATTERS-KAMMERER M K, et al. A 60 GHz 360° phase shifter with 2.7° phase resolution and 1.4° RMS phase error in a 40-nm CMOS technology[C]. IEEE Radio Frequency Integrated Circuits Symposium, Philadelphia, USA, 2018: 144–147. doi: 10.1109/RFIC.2018.8428980.
    [7]
    PEPE D and ZITO D. Two mm-wave vector modulator active phase shifters with novel IQ generator in 28 nm FDSOI CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(2): 344–356. doi: 10.1109/JSSC.2016.2605659
    [8]
    LI Huanbo, CHEN Jixin, HOU Debin, et al. A W-band 6-bit phase shifter with 7 dB gain and 1.35° RMS phase error in 130 nm SiGe BiCMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(10): 1839–1843. doi: 10.1109/TCSII.2019.2944166.
    [9]
    TESTA P V, CARTA C, and ELLINGER F. A 160–190-GHz vector-modulator phase shifter for low-power applications[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(1): 86–89. doi: 10.1109/LMWC.2019.2952766
    [10]
    LI Xuguang and FU Haipeng. A 100-GHz full 360° reflection-type phase shifter using a balanced phase inverter[J]. Microwave and Optical Technology Letters, 2020, 62(5): 1935–1939. doi: 10.1002/mop.32263
    [11]
    KIM S Y, KANG D W, KOH K J, et al. An improved wideband all-pass I/Q network for millimeter-wave phase shifters[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(11): 3431–3439. doi: 10.1109/tmtt.2012.2212027
    [12]
    MOHSENPOUR M M and SAAVEDRA C E. Variable 360° vector-sum phase shifter with coarse and fine vector scaling[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7): 2113–2120. doi: 10.1109/TMTT.2016.2574843
    [13]
    CHAN W L and LONG J R. A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 554–564. doi: 10.1109/JSSC.2009.2039274
    [14]
    HUANG Daquan, HANT W, WANG Ningyi, et al. A 60 GHz CMOS VCO using on-chip resonator with embedded artificial dielectric for size, loss and noise reduction[C]. IEEE International Solid State Circuits Conference, San Francisco, USA, 2006. doi: 10.1109/ISSCC.2006.1696168.
    [15]
    LAROCCA T, TAM S W, HUANG Daquan, et al. Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs[C]. IEEE MTT-S International Microwave Symposium Digest, Atlanta, USA, 2008: 181–184. doi: 10.1109/MWSYM.2008.4633133.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1274) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return