Advanced Search
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Jianmin ZENG, Zhang ZHANG, Zhiyi YU, Guangjun XIE. Applications of Generic In-memory Computing Architecture Platform Based on SRAM to Internet of Things[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1574-1586. doi: 10.11999/JEIT210010
Citation: Jianmin ZENG, Zhang ZHANG, Zhiyi YU, Guangjun XIE. Applications of Generic In-memory Computing Architecture Platform Based on SRAM to Internet of Things[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1574-1586. doi: 10.11999/JEIT210010

Applications of Generic In-memory Computing Architecture Platform Based on SRAM to Internet of Things

doi: 10.11999/JEIT210010
Funds:  The National Natural Science Foundation of China(U19A2053, 61674049), The Fundamental Research Funds for Central Universities (JZ2020YYPY0089), The Key Laboratory of CAS (IIMDKFJJ-19-04)
  • Received Date: 2021-01-05
  • Rev Recd Date: 2021-04-09
  • Available Online: 2021-04-30
  • Publish Date: 2021-06-18
  • In-Memory Computing (IMC) architectures have aroused much attention recently, and are regarded as promising candidates to break the von Neumann bottleneck. IMC architectures can bring significant performance and energy-efficiency improvement especially in data-intensive computation. Among those emerging IMC architectures, SRAM-based ones have also been extensively researched and applied to many scenarios. In this paper, IoT applications are explored based on a SRAM-based generic IMC architecture platform named DM-IMCA. To be specific, the algorithms of several lightweight data-intensive applications in IoT area including information security, Binary Neural Networks (BNN) and image processing are analyzed, decomposed and then mapped to SRAM macros of DM-IMCA, so as to accelerate the computation of these applications. Experimental results indicate that DM-IMCA can offer up to 24 times performance speed-up, compared to a baseline system with conventional von Neumann architecture, in terms of realizing lightweight data-intensive applications in IoT.
  • loading
  • [1]
    JIN Xiaolong, WAH B W, CHENG Xueqi, et al. Significance and challenges of big data research[J]. Big Data Research, 2015, 2(2): 59–64. doi: 10.1016/j.bdr.2015.01.006
    [2]
    SCHILIZZI R T. The square kilometer array[C]. Proceedings SHE, Ground-based Telescopes, Glasgow, UK, 2004: 62–71.
    [3]
    JONGERIUS R, WIJNHOLDS S, NIJBOER R, et al. An end-to-end computing model for the square kilometre array[J]. Computer, 2014, 47(9): 48–54. doi: 10.1109/MC.2014.235
    [4]
    ZASLAVSKY A, PERERA C, and GEORGAKOPOULOS D. Sensing as a service and big data[J]. arXiv preprint arXiv: 1301.0159, 2013.
    [5]
    FLORIDI L. Big data and their epistemological challenge[J]. Philosophy & Technology, 2012, 25(4): 435–437. doi: 10.1007/s13347-012-0093-4
    [6]
    REINSEL D, GANTZ J, and RYDNING J. Data age 2025: The digitization of the world from edge to core[R]. IDC White Paper–#US44413318, 2018.
    [7]
    SIEGL P, BUCHTY R, and BEREKOVIC M. Data-Centric computing frontiers: A survey on processing-in-memory[C]. Proceedings of the Second International Symposium on Memory Systems (MEMSYS'16), Alexandria, USA, 2016: 295–308. doi: 10.1145/2989081.2989087.
    [8]
    PATTERSON D, ANDERSON T, CARDWELL N, et al. A case for intelligent RAM[J]. IEEE Micro, 1997, 17(2): 34–44. doi: 10.1109/40.592312
    [9]
    ROGERS B M, KRISHNA A, BELL G B, et al. Scaling the bandwidth wall: Challenges in and avenues for CMP scaling[J]. ACM SIGARCH Computer Architecture News, 2009, 37(3): 371–382. doi: 10.1145/1555815.1555801
    [10]
    DAS R. Blurring the lines between memory and computation[J]. IEEE Micro, 2017, 37(6): 13–15. doi: 10.1109/MM.2017.4241340
    [11]
    ZHU Qiuling, AKIN B, SUMBUL H E, et al. A 3D-stacked logic-in-memory accelerator for application-specific data intensive computing[C]. 2013 IEEE International 3D Systems Integration Conference (3DIC), San Francisco, USA, 2013: 1–7. doi: 10.1109/3DIC.2013.6702348.
    [12]
    AHN J, HONG S, YOO S, et al. A scalable processing-in-memory accelerator for parallel graph processing[C]. Proceeding of the ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA'15), Portland, USA, 2015: 105–117. doi: 10.1145/2749469.2750386.
    [13]
    AHN J, YOO S, MUTLU O, et al. PIM-enabled instructions: A low-overhead, locality-aware processing-in-memory architecture[C]. The 42nd Annual International Symposium on Computer Architecture (ISCA'15), Portland, USA, 2015: 336–348. doi: 10.1145/2749469.2750385.
    [14]
    CHI Ping, LI Shuangchen, XU Cong, et al. PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory[J]. ACM SIGARCH Computer Architecture News, 2016, 44(3): 27–39. doi: 10.1145/3007787.3001140
    [15]
    HALAWANI Y, MOHAMMAD B, LEBDEH M A, et al. ReRAM-based in-memory computing for search engine and neural network applications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(2): 388–397. doi: 10.1109/JETCAS.2019.2909317
    [16]
    ZHANG Bin, CHEN Weilin, ZENG Jianmin, et al. 90% yield production of polymer nano-memristor for in-memory computing[J]. Nature Communications, 2021, 12(1): 1984. doi: 10.1038/s41467-021-22243-8
    [17]
    JELOKA S, AKESH N B, SYLVESTER D, et al. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory[J]. IEEE Journal of Solid-State Circuits, 2016, 51(4): 1009–1021. doi: 10.1109/JSSC.2016.2515510
    [18]
    AGA S, JELOKA S, SUBRAMANIYAN A, et al. Compute caches[C]. 2017 IEEE International Symposium on High Performance Computer Architecture, Austin, USA, 2017: 481–492. doi: 10.1109/hpca.2017.21.
    [19]
    ZHANG Yiqun, XU Li, DONG Qing, et al. Recryptor: A reconfigurable cryptographic cortex-M0 processor with in-memory and near-memory computing for IoT security[J]. IEEE Journal of Solid-State Circuits, 2018, 53(4): 995–1005. doi: 10.1109/JSSC.2017.2776302
    [20]
    ZENG Jianmin, ZHANG Zhang, CHEN Runhao, et al. DM-IMCA: A dual-mode in-memory computing architecture for general purpose processing[J]. IEICE Electronics Express, 2020, 17(4): 20200005. doi: 10.1587/elex.17.20200005
    [21]
    AGRAWAL A, JAISWAL A, ROY D, et al. Xcel-RAM: Accelerating binary neural networks in high-throughput SRAM compute arrays[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(8): 3064–3076. doi: 10.1109/TCSI.2019.2907488
    [22]
    YIN Shihui, JIANG Zhewei, SEO J S, et al. XNOR-SRAM: In-memory computing SRAM macro for binary/ternary deep neural networks[J]. IEEE Journal of Solid-State Circuits, 2020, 55(6): 1733–1743. doi: 10.1109/jssc.2019.2963616
    [23]
    LIU Rui, PENG Xiaochen, SUN Xiaoyu, et al. Parallelizing SRAM arrays with customized bit-cell for binary neural networks[C]. 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco, USA, 2018: 1–6. doi: 10.1109/DAC.2018.8465935.
    [24]
    KANG Mingu, GONUGONDLA S K, PATIL A, et al. A multi-functional in-memory inference processor using a standard 6T SRAM array[J]. IEEE Journal of Solid-State Circuits, 2018, 53(2): 642–655. doi: 10.1109/JSSC.2017.2782087
    [25]
    BELLOVIN S M. Frank miller: Inventor of the one-time pad[J]. Cryptologia, 2011, 35(3): 203–222. doi: 10.1080/01611194.2011.583711
    [26]
    SOBTI R and GEETHA G. Cryptographic hash functions: A review[J]. IJCSI International Journal of Computer Science Issues, 2012, 9(2): 461–479.
    [27]
    SEOK B, PARK J, and PARK J H. A lightweight hash-based blockchain architecture for industrial IoT[J]. Applied Sciences, 2019, 9(18): 3740. doi: 10.3390/app9183740
    [28]
    SZE V, CHEN Y H, YANG T J, et al. Efficient processing of deep neural networks: A tutorial and survey[J]. Proceedings of the IEEE, 2017, 105(12): 2295–2329. doi: 10.1109/JPROC.2017.2761740
    [29]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [30]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014.
    [31]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR'16), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [32]
    COURBARIAUX M, HUBARA I, SOUDRY D, et al. Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or –1[J]. arXiv preprint arXiv: 1602.02830, 2016.
    [33]
    RASTEGARI M, ORDONEZ V, REDMON J, et al. XNOR-Net: ImageNet classification using binary convolutional neural networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 525–542. doi: 10.1007/978-3-319-46493-0_32.
    [34]
    FOLEY J D, VAN F D, VAN DAM A, et al. Computer Graphics: Principles and Practice[M]. Boston: Addison-Wesley Professional, 1996: 1–1175.
    [35]
    WAN Yi and XIE Qisong. A novel framework for optimal RGB to grayscale image conversion[C]. The 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 2016: 345–348. doi: 10.1109/IHMSC.2016.201.
    [36]
    PRATT W K. Introduction to Digital Image Processing[M]. Boca Ration: CRC Press, 2013: 1–756.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (1288) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return