Advanced Search
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Pengjun WANG, Lewei LI, Yangong ZHENG, Gang LI. High Steady-state Physical Unclonable Function Generator Based on Gas Sensors[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1596-1602. doi: 10.11999/JEIT201104
Citation: Pengjun WANG, Lewei LI, Yangong ZHENG, Gang LI. High Steady-state Physical Unclonable Function Generator Based on Gas Sensors[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1596-1602. doi: 10.11999/JEIT201104

High Steady-state Physical Unclonable Function Generator Based on Gas Sensors

doi: 10.11999/JEIT201104
Funds:  The National Natural Science Foundation of China(61874078, 61871244), The National Key Research and Development Program of China(2018YFB2202100), The Ningbo Public Welfare Projects(202002N3134), The Science and Technology Innovation Project of Ningbo University(2021SRIP1327)
  • Received Date: 2020-12-31
  • Rev Recd Date: 2021-04-12
  • Available Online: 2021-04-21
  • Publish Date: 2021-06-18
  • As a strategic emerging industry, the Internet of Things (IoT) has become a national development focus, but it also faces various security threats in practical applications. Ensuring the security of data transmission, processing and storage of resource-constrained IoT systems has become a research hotspot. In this paper, a high steady-state Physical Unclonable Function(PUF) generator scheme is proposed by studying PUF and the deviation of the sensor preparation process. Firstly, the Electrostatic Spray Deposition (ESD) is used to generate nanofibers with high specific surface area characteristics and high-temperature calcination technology is combined to prepare Pd-SnO2 gas sensors. Secondly, the response data of gas sensors to formaldehyde gas is collected under different gas concentration, ambient temperature and heating voltage conditions. Then, a random resistance multi-bit balance algorithm is used to compare the response data of different clusters of gas sensors and then multiple high steady-state PUF data is generated. Finally, the safety and reliability of the designed PUF generator are evaluated. Experimental results show that the randomness of the PUF generator is 97.03%, the reliability is 97.85%, and the uniqueness is 49.04%, which can be widely used in IoT security field.
  • loading
  • [1]
    BUTUN I, OSTERBERG P, and SONG H. Security of the Internet of Things: Vulnerabilities, attacks, and countermeasures[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 616–644. doi: 10.1109/COMST.2019.2953364
    [2]
    SAIRAM R, BHUNIA S, THANGAVELU V, et al. NETRA: Enhancing IoT security using NFV-based edge traffic analysis[J]. IEEE Sensors Journal, 2019, 19(22): 4660–4671. doi: 10.1109/JSEN.2019.2900097
    [3]
    KOYUICEM D, BOUABDALLAH A, and LAKHLEF H. Internet of Things security: A top-down survey[J]. Computer Networks, 2018, 141(2018): 199–221. doi: 10.1016/j.comnet.2018.03.012
    [4]
    PAPPU R, RECHT B, TAYLOR J, et al. Physical one-way functions[J]. Science, 2002, 297(5589): 2026–2030. doi: 10.1126/science.1074376
    [5]
    龚越, 叶靖, 胡瑜, 等. 内建自调整的仲裁器物理不可克隆函数[J]. 计算机辅助设计与图形学学报, 2017, 29(9): 1734–1739. doi: 10.3969/j.issn.1003-9775.2017.09.018

    GONG Yue, YE Jing, HU Yu, et al. Built-in self-adjusting arbiter PUF[J]. Journal of Computer-Aided Design &Computer Graphics, 2017, 29(9): 1734–1739. doi: 10.3969/j.issn.1003-9775.2017.09.018
    [6]
    孙子文, 叶乔. 利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究[J]. 电子与信息学报, 2021, 43(1): 234–241. doi: 10.11999/JEIT191013

    SUN Ziwen and YE Qiao. Study on the physical unclonable function of the reliable information entropy extracted by the frequency characteristic of oscillating ring[J]. Jounal of Electronics &Information Technology, 2021, 43(1): 234–241. doi: 10.11999/JEIT191013
    [7]
    LI Gang, WANG Pengjun, MA Xuejiao, et al. A 215-F2 bistable physically unclonable function with an ACF of < 0.005 and a native bit instability of 2.05% in 65-nm CMOS process[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(11): 2290–2299. doi: 10.1109/TVLSI.2020.3014892
    [8]
    GOLANBARI M, KIAMEHR S, BISHNOI R, et al. Reliable memory PUF design for low-power applications[C]. The 19th International Symposium on Quality Electronic Design, Santa Clara, USA, 2018: 207−213. doi: 10.1109/ISQED.2018.8357289.
    [9]
    张培勇, 袁晓东, 王雪洁, 等. 基于D触发器的物理不可克隆函数[J]. 浙江大学学报(理学版), 2019, 46(1): 35–41. doi: 10.3785/j.issn.1008-9497.2019.01.005

    ZHANG Peiyong, YUAN Xiaodong, WANG Xuejie, et al. D flip-flop based physical unclonable function[J]. Journal of Zhejiang University (Science Edition), 2019, 46(1): 35–41. doi: 10.3785/j.issn.1008-9497.2019.01.005
    [10]
    FUKUSHIMA K, YOSHIMURA A, KIYOMOTO S, et al. Evaluation of software PUF based on gyroscope[C]. The 15th International Conference on Information Security Practice and Experience, Kuala Lumpur, Malaysia, 2019: 232-247. doi: 10.1007/978-3-030-34339-2_13.
    [11]
    KUMAR S, LABRADO C, BADHAN R, et al. Solar cell based physically unclonable function for cybersecurity in IoT devices[C]. 2018 IEEE Computer Society Annual Symposium on VLSI, Hong Kong, China, 2018: 697–702. doi: 10.1109/ISVLSI.2018.00131.
    [12]
    ROSENFELD K, GAVAS E, and KARRI R. Sensor physical unclonable functions[C]. 2010 IEEE International Symposium on Hardware-Oriented Security and Trust, Anaheim, USA, 2010: 112–117. doi: 10.1109/HST.2010.5513103.
    [13]
    DEY S, ROY N, XU Wenyuan, et al. AccelPrint: Imperfections of accelerometers make smartphones trackable[C]. Network and Distributed System Security Symposium, San Diego, USA, 2014: 1–16. doi: 10.14722/ndss.2014.23059.
    [14]
    AYSU A, GHALATY N, FRANKLIN Z, et al. Digital fingerprints for low-cost platforms using MEMS sensors[C]. Workshop on Embedded Systems Security, Montreal Quebec, Canada, 2013: 1-6. doi: 10.1145/2527317.2527319.
    [15]
    LABRADO C and THAPLIYAL H. Design of a piezoelectric-based physically unclonable function for IoT security[J]. IEEE Internet of Things Journal, 2019, 6(2): 2770–2777. doi: 10.1109/JIOT.2018.2874626
    [16]
    KANG D, KIM J, KIM I, et al. Experimental qualification of the process of electrostatic spray deposition[J]. Coatings, 2019, 9(5): 294–312. doi: 10.3390/coatings9050294
    [17]
    刘兆香, 刘勇, 王欣, 等. 静电纺丝过程中泰勒锥、射流鞭动和电晕现象分析[J]. 塑料, 2012, 41(3): 29–34. doi: 10.3969/j.issn.1001-9456.2012.03.010

    LIU Zhaoxiang, LIU Yong, WANG Xin, et al. Phenomena analysis of taylor cone, jet whipping and corona in process of electrospinning[J]. Plastic, 2012, 41(3): 29–34. doi: 10.3969/j.issn.1001-9456.2012.03.010
    [18]
    SHIN Y, HOHMAN M, BRENNER M, et al. Experimental characterization of electrospinning: The electrically forced jet and instabilities[J]. Polymer, 2001, 42(25): 9955–9967. doi: 10.1016/S0032-3861(01)00540-7
    [19]
    YI J, LEE J, and PARK W. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors[J]. Sensors & Actuators, 2011, 155(1): 264–269. doi: 10.1016/j.snb.2010.12.033
    [20]
    李刚, 汪鹏君, 张跃军, 等. 基于65 nm工艺的多端口可配置PUF电路设计[J]. 电子与信息学报, 2016, 38(6): 1541–1546. doi: 10.11999/JEIT150968

    LI Gang, WANG Pengjun, ZHANG Yuejun, et al. Design of multi-port configurable PUF circuit based on 65 nm technology[J]. Jounal of Electronics &Information Technology, 2016, 38(6): 1541–1546. doi: 10.11999/JEIT150968
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (614) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return