Advanced Search
Volume 44 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
HUANG Lilian, YAO Wenju, XIANG Jianhong, WANG Linyu. Extreme Multi-stability of a Four-dimensional Chaotic System with Infinitely Many Symmetric Homogeneous Attractors[J]. Journal of Electronics & Information Technology, 2022, 44(1): 390-399. doi: 10.11999/JEIT201095
Citation: HUANG Lilian, YAO Wenju, XIANG Jianhong, WANG Linyu. Extreme Multi-stability of a Four-dimensional Chaotic System with Infinitely Many Symmetric Homogeneous Attractors[J]. Journal of Electronics & Information Technology, 2022, 44(1): 390-399. doi: 10.11999/JEIT201095

Extreme Multi-stability of a Four-dimensional Chaotic System with Infinitely Many Symmetric Homogeneous Attractors

doi: 10.11999/JEIT201095
Funds:  The National Natural Science Foundation of China (61203004), The Natural Science Foundation of Heilongjiang Province (F201220),The Heilongjiang Natural Science Foundation Joint Guide Project (LH2020F022)
  • Received Date: 2020-12-30
  • Rev Recd Date: 2021-06-02
  • Available Online: 2021-08-26
  • Publish Date: 2022-01-10
  • A new four-dimensional chaotic system with extreme multi-stability based on a classic three-dimensional chaotic system is proposed. The new system has a line equilibrium point, which can generate an infinite number of symmetrical homogeneous attractors. The chaotic characteristics of the system are analyzed by phase orbit diagram and Poincaré section methods. Using phase orbit diagrams, bifurcation diagrams and Lyapunov exponent spectrum methods, the influence of initial conditions on the extreme multi-stability of the system is analyzed. The analysis shows that the system has a large initial value variation range, and the Lyapunov exponent spectrum is constant except for the zero point. In addition, the system also has centrally symmetrical discrete bifurcation diagrams. Furthermore, the relationship between the initial symmetry of the system and the symmetry of the attractor is studied, which is different from the symmetrical attractor in the existing chaotic system, which can generate an infinite number of symmetrical homogeneous attractors. Finally, circuit simulation software is used to build an analog circuit to capture the chaotic attractor of the system, and the result verifies the correctness of the numerical simulation.
  • loading
  • [1]
    GLEICK J and HILBORN R C. Chaos, making a new science[J]. American Journal of Physics, 1988, 56(11): 1053–1054. doi: 10.1119/1.15345
    [2]
    陈关荣, 吕金虎. Lorenz系统族的动力学分析、控制与同步[M]. 北京: 科学出版社, 2003: 278.

    CHEN Guanrong and LÜ Jinhu. Dynamics Analysis, Control and Synchronization of Lorenz System Family[M]. Beijing: Science Press, 2003: 278.
    [3]
    HASLER M. Engineering chaos for encryption and broadband communication[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1995, 353(1701): 115–126.
    [4]
    OPPENHEIM A V, WORNELL G W, ISABELLE S H, et al. Signal processing in the context of chaotic signals[C]. ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, USA, 1992: 117–120.
    [5]
    GRASSI G and MASCOLO S. A system theory approach for designing cryptosystems based on hyperchaos[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1999, 46(9): 1135–1138. doi: 10.1109/81.788815
    [6]
    WANG B, ZOU F C, and CHENG J. A memristor-based chaotic system and its application in image encryption[J]. Optik, 2018, 154: 538–544. doi: 10.1016/j.ijleo.2017.10.080
    [7]
    HASSAN M F. A new approach for secure communication using constrained hyperchaotic systems[J]. Applied Mathematics and Computation, 2014, 246: 711–730. doi: 10.1016/j.amc.2014.08.029
    [8]
    FILALI R L, BENREJEB M, and BORNE P. On observer-based secure communication design using discrete-time hyperchaotic systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(5): 1424–1432. doi: 10.1016/j.cnsns.2013.09.005
    [9]
    ELBERT T, RAY W J, KOWALIK Z J, et al. Chaos and physiology: Deterministic chaos in excitable cell assemblies[J]. Physiological Reviews, 1994, 74(1): 1–47. doi: 10.1152/physrev.1994.74.1.1
    [10]
    YANG Lijiang and CHEN Tianlun. Application of chaos in genetic algorithms[J]. Communications in Theoretical Physics, 2002, 38(2): 168–172. doi: 10.1088/0253-6102/38/2/168
    [11]
    MASLOV V P. Theory of chaos and its application to the crisis of debts and the origin of inflation[J]. Russian Journal of Mathematical Physics, 2009, 16(1): 103–120. doi: 10.1134/S1061920809010087
    [12]
    LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [13]
    CHUA L, KOMURO M, and MATSUMOTO T. The double scroll family[J]. IEEE Transactions on Circuits and Systems, 1986, 33(11): 1072–1118. doi: 10.1109/TCS.1986.1085869
    [14]
    MADAN R N. Chua’s Circuit: A Paradigm for Chaos[M]. Singapore: World Scientific, 1993: 1042.
    [15]
    LÜ Jinhu, CHEN Guanrong, and ZHANG Suochun. Dynamical analysis of a new chaotic attractor[J]. International Journal of Bifurcation and Chaos, 2002, 12(5): 1001–1015. doi: 10.1142/S0218127402004851
    [16]
    STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [17]
    ITOH M and CHUA L O. Memristor oscillators[J]. International Journal of Bifurcation and Chaos, 2008, 18(11): 3183–3206. doi: 10.1142/S0218127408022354
    [18]
    BAO Bocheng, LIU Zhong, and XU Jianping. Transient chaos in smooth memristor oscillator[J]. Chinese Physics B, 2010, 19(3): 030510. doi: 10.1088/1674-1056/19/3/030510
    [19]
    闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688.

    MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688.
    [20]
    STANKEVICH N and VOLKOV E. Multistability in a three-dimensional oscillator: Tori, resonant cycles and chaos[J]. Nonlinear Dynamics, 2018, 94(4): 2455–2467. doi: 10.1007/s11071-018-4502-9
    [21]
    RAJAGOPAL K, JAFARI S, KARTHIKEYAN A, et al. Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors[J]. Circuits, Systems, and Signal Processing, 2018, 37(9): 3702–3724. doi: 10.1007/s00034-018-0750-7
    [22]
    ZHANG Sen, ZENG Yicheng, LI Zhijun, et al. A novel simple no-equilibrium chaotic system with complex hidden dynamics[J]. International Journal of Dynamics and Control, 2018, 6(4): 1465–1476. doi: 10.1007/s40435-018-0413-3
    [23]
    WU Huagan, BAO Han, XU Quan, et al. Abundant coexisting multiple attractors’ behaviors in three-dimensional sine chaotic system[J]. Complexity, 2019, 2019: 3687635.
    [24]
    NJITACKE Z T, MOGUE R L T, LEUTCHO G D, et al. Heterogeneous multistability in a novel system with purely nonlinear terms[J]. International Journal of Electronics, 2021, 108(7): 1166–1182. doi: 10.1080/00207217.2020.1833371
    [25]
    包涵, 包伯成, 林毅, 等. 忆阻自激振荡系统的隐藏吸引子及其动力学特性[J]. 物理学报, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501

    BAO Han, BAO Bocheng, LIN Yi, et al. Hidden attractor and its dynamical characteristic in memristive self-oscillating system[J]. Acta Physica Sinica, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [26]
    KENGNE J, TABEKOUENG Z N, TAMBA V K, et al. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015, 25(10): 103126. doi: 10.1063/1.4934653
    [27]
    BAO Bocheng, BAO Han, WANG Ning, et al. Hidden extreme multistability in memristive hyperchaotic system[J]. Chaos, Solitons & Fractals, 2017, 94: 102–111. doi: 10.1016/j.chaos.2016.11.016
    [28]
    BAO Han, JIANG Tao, CHU Kaibin, et al. Memristor-based canonical Chua’s circuit: Extreme multistability in voltage-current domain and its controllability in flux-charge domain[J]. Complexity, 2018, 2018: 5935637.
    [29]
    CHEN Mo, SUN Mengxia, BAO Bocheng, et al. Controlling extreme multistability of memristor emulator-based dynamical circuit in flux-charge domain[J]. Nonlinear Dynamics, 2018, 91(2): 1395–1412. doi: 10.1007/s11071-017-3952-9
    [30]
    WANG Guangyi, SHI Chuanbao, WANG Xiaowei, et al. Coexisting oscillation and extreme multistability for a memcapacitor-based circuit[J]. Mathematical Problems in Engineering, 2017, 2017: 6504969.
    [31]
    AHMADI A, WANG X, NAZARIMEHR F, et al. Coexisting infinitely many attractors in a new chaotic system with a curve of equilibria: Its extreme multi-stability and Kolmogorov–Sinai entropy computation[J]. Advances in Mechanical Engineering, 2019, 11(11): 1–8.
    [32]
    GONG Lihua, WU Rouging, and ZHOU Nanrun. A new 4D chaotic system with coexisting hidden chaotic attractors[J]. International Journal of Bifurcation and Chaos, 2020, 30(10): 2050142. doi: 10.1142/S0218127420501424
    [33]
    HUANG Lilian, YAO Wenju, XIANG Jianhong, et al. Heterogeneous and homogenous multistabilities in a novel 4D memristor-based chaotic system with discrete bifurcation diagrams[J]. Complexity, 2020, 2020: 2408460.
    [34]
    LIU Wenbo and CHEN Guanrong. A new chaotic system and its generation[J]. International Journal of Bifurcation and Chaos, 2003, 13(1): 261–267. doi: 10.1142/S0218127403006509
    [35]
    LIU Wenbo and CHEN Guanrong. Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor?[J]. International Journal of Bifurcation and Chaos, 2004, 14(4): 1395–1403. doi: 10.1142/S0218127404009880
    [36]
    包伯成. 混沌电路导论[M]. 北京: 科学出版社, 2013: 45–46.

    BAO Bocheng. An Introduction to Chaotic Circuits[M]. Beijing: Science Press, 2013: 45–46.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (952) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return