Citation: | LIU Ke, ZHU Zezheng, YU Jun, MA Junda. Sparse Array Design Methods Based on Hole Analysis of the Coprime Array[J]. Journal of Electronics & Information Technology, 2022, 44(1): 372-379. doi: 10.11999/JEIT201024 |
[1] |
孙兵, 阮怀林, 吴晨曦, 等. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法[J]. 电子与信息学报, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041
SUN Bing, RUAN Huailin, WU Chenxi, et al. Direction of arrival estimation with coprime array based on Toeplitz covariance matrix reconstruction[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041
|
[2] |
WANG Xinghua, CHEN Zhenhong, REN Shiwei, et al. DOA estimation based on the difference and sum coarray for coprime arrays[J]. Digital Signal Processing, 2017, 69: 22–31. doi: 10.1016/j.dsp.2017.06.013
|
[3] |
SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
|
[4] |
LIU Chunlin and VAIDYANATHAN P P. Remarks on the spatial smoothing step in coarray MUSIC[J]. IEEE Signal Processing Letters, 2015, 22(9): 1438–1442. doi: 10.1109/LSP.2015.2409153
|
[5] |
PAN Jingjing, SUN Meng, WANG Yide, et al. An enhanced spatial smoothing technique with ESPRIT algorithm for direction of arrival estimation in coherent scenarios[J]. IEEE Transactions on Signal Processing, 2020, 68: 3635–3643. doi: 10.1109/TSP.2020.2994514
|
[6] |
CHEN Hua, HOU Chunping, ZHU Weiping, et al. ESPRIT-like two-dimensional direction finding for mixed circular and strictly noncircular sources based on joint diagonalization[J] Signal Processing, 2017, 141: 48–56. doi: 10.1016/j.sigpro.2017.05.024.
|
[7] |
BOUDAHER E, AHMAD F, AMIN M G, et al. Mutual coupling effect and compensation in non-uniform arrays for direction-of-arrival estimation[J]. Digital Signal Processing, 2017, 61: 3–14. doi: 10.1016/j.dsp.2016.06.005
|
[8] |
TANG Mang, SHU Ting, HE Jin, et al. Direction-finding with spread array of identical doublets[J]. IEEE Communications Letters, 2021, 25(1): 142–146. doi: 10.1109/LCOMM.2020.3026367
|
[9] |
MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138
|
[10] |
PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264
|
[11] |
ZHENG Zhi, YANG Chaolin, WANG Wenqin, et al. Robust DOA estimation against mutual coupling with nested array[J]. IEEE Signal Processing Letters, 2020, 27: 1360–1364. doi: 10.1109/LSP.2020.3011314
|
[12] |
VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
|
[13] |
ALAWSH S A and MUQAIBEL A H. Multi-level prime array for sparse sampling[J]. IET Signal Processing, 2018, 12(6): 688–699. doi: 10.1049/iet-spr.2017.0252
|
[14] |
QIN Sin, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838
|
[15] |
ZHOU Chengwei, GU Yujie, ZHANG Y D, et al. Compressive sensing-based coprime array direction-of-arrival estimation[J]. IET Communications, 2017, 11(11): 1719–1724. doi: 10.1049/iet-com.2016.1048
|
[16] |
GUO Muran, ZHANG Y D, and CHEN Tao. DOA estimation using compressed sparse array[J]. IEEE Transactions on Signal Processing, 2018, 66(15): 4133–4146. doi: 10.1109/TSP.2018.2847645
|
[17] |
LIU Chunlin, VAIDYANATHAN P P, and PAL P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2639–2642. doi: 10.1109/ISCAS.2016.7539135.
|
[18] |
LIU Ke and ZHANG Y D. Coprime array-based DOA estimation in unknown nonuniform noise environment[J]. Digital Signal Processing, 2018, 79: 66–74. doi: 10.1016/j.dsp.2018.04.003
|
[19] |
WANG Mianzhi and NEHORAI A. Coarrays, MUSIC, and the Cramér–rao bound[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 933–946. doi: 10.1109/TSP.2016.2626255
|