Advanced Search
Volume 44 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
SHI Yuexiang, ZHOU Yue. Person Re-identification Based on Stepped Feature Space Segmentation and Local Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(1): 195-202. doi: 10.11999/JEIT201006
Citation: SHI Yuexiang, ZHOU Yue. Person Re-identification Based on Stepped Feature Space Segmentation and Local Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(1): 195-202. doi: 10.11999/JEIT201006

Person Re-identification Based on Stepped Feature Space Segmentation and Local Attention Mechanism

doi: 10.11999/JEIT201006
Funds:  The National Natural Science Foundation of China (61602397, 61502407)
  • Received Date: 2020-11-30
  • Accepted Date: 2021-11-05
  • Rev Recd Date: 2021-10-21
  • Available Online: 2021-11-16
  • Publish Date: 2022-01-10
  • In order to make the network capture more effective content distinguish pedestrians, this paper proposes a multi-branch network based on Stepped feature space segmentation and Local Branch Attention Network (SLANet) mechanism to pay attention to the salient information of local images. First of all, a stepped branch attention module is introduced into the network. This module blocks the feature map horizontally in a stepped manner, and branch attention is used to assign different weights to each branch. Secondly, a multi-scale adaptive attention module is introduced into the network, which processes local features and adapts the size of the receptive field to adapt to images of different scales. Meanwhile, channel attention and spatial attention are combined to screen out the important features of the image. In the design of network, the multi-granularity network is used to combine the global feature with the local feature. Finally, the method is validated on three widely used person re-identification data sets Market-1501, DukeMTMC-reID and CUHK03. Among them, mAP and Rank-1 on market-1501 data set reach 88.1% and 95.6% respectively. The experimental results show that the proposed network model can improve the accuracy of person re-identification.
  • loading
  • [1]
    周智恒, 刘楷怡, 黄俊楚, 等. 一种基于等距度量学习策略的行人重识别改进算法[J]. 电子与信息学报, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336

    ZHOU Zhiheng, LIU Kaiyi, HUANG Junchu, et al. Improved metric learning algorithm for person re-identification based on equidistance[J]. Journal of Electronics &Information Technology, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336
    [2]
    陈莹, 许潇月. 基于双向参考集矩阵度量学习的行人再识别[J]. 电子与信息学报, 2020, 42(2): 394–402. doi: 10.11999/JEIT190159

    CHEN Ying and XU Xiaoyue. Matrix metric learning for person re-identification based on bidirectional reference set[J]. Journal of Electronics &Information Technology, 2020, 42(2): 394–402. doi: 10.11999/JEIT190159
    [3]
    HE Botao and YU Shaohua. Ring-push metric learning for person reidentification[J]. Journal of Electronic Imaging, 2017, 26(3): 033005. doi: 10.1117/1.JEI.26.3.033005
    [4]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [5]
    杨锋, 许玉, 尹梦晓, 等. 基于深度学习的行人重识别综述[J]. 计算机应用, 2020, 40(5): 1243–1252. doi: 10.11772/j.issn.1001-9081.2019091703

    YANG Feng, XU Yu, YIN Mengxiao, et al. Review on deep learning-based pedestrian re-identification[J]. Journal of Computer Applications, 2020, 40(5): 1243–1252. doi: 10.11772/j.issn.1001-9081.2019091703
    [6]
    ZHENG Zhedong, ZHENG Liang, and YANG Yi. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3774–3782. doi: 10.1109/ICCV.2017.405.
    [7]
    SUN Yifan, ZHENG Liang, YANG Yi, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 480–496. doi: 10.1007/978-3-030-01225-0_30.
    [8]
    WANG Guanshuo, YUAN Yufeng, CHEN Xiong, et al. Learning discriminative features with multiple granularities for person Re-identification[C]. Proceedings of the 26th ACM international conference on Multimedia, Seoul, Republic of Korea, 2018: 274–282. doi: 10.1145/3240508.3240552.
    [9]
    ZHAO Haiyu, TIAN Maoqing, SUN Shuyang, et al. Spindle Net: Person re-identification with human body region guided feature decomposition and fusion[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 907–915. doi: 10.1109/CVPR.2017.103.
    [10]
    MIAO Jiaxu, WU Yu, LIU Ping, et al. Pose-guided feature alignment for occluded person re-identification[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 542–551. doi: 10.1109/ICCV.2019.00063.
    [11]
    SONG Chunfeng, HUANG Yan, OUYANG Wanli, et al. Mask-guided contrastive attention model for person re-identification[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1179–1188. doi: 10.1109/CVPR.2018.00129.
    [12]
    LI Wei, ZHU Xiatian, and GONG Shaogang. Harmonious attention network for person re-identification[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2285–2294. doi: 10.1109/CVPR.2018.00243.
    [13]
    LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 510–519. doi: 10.1109/CVPR.2019.00060.
    [14]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [15]
    LUO Hao, GU Youzhi, LIAO Xingyu, et al. Bag of tricks and a strong baseline for deep person re-identification[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 1487–1495. doi: 10.1109/CVPRW.2019.00190.
    [16]
    HERMANS A, BEYER L, and LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. https://arxiv.org/abs/1703.07737, 2017.
    [17]
    ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1116–1124. doi: 10.1109/ICCV.2015.133.
    [18]
    RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]. Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 17–35. doi: 10.1007/978-3-319-48881-3_2.
    [19]
    LI Wei, ZHAO Rui, XIAO Tong, et al. DeepReID: Deep filter pairing neural network for person re-identification[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 152–159. doi: 10.1109/CVPR.2014.27.
    [20]
    SUN Yifan, ZHENG Liang, DENG Weijian, et al. SVDNet for pedestrian retrieval[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3820–3828. doi: 10.1109/ICCV.2017.410.
    [21]
    FU Yang, WEI Yunchao, ZHOU Yuqian, et al. Horizontal pyramid matching for person re-identification[C]. Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 8295–8302. doi: 10.1609/aaai.v33i01.33018295.
    [22]
    CHEN Binghui, DENG Weihong, and HU Jiani. Mixed high-order attention network for person re-identification[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 371–381. doi: 10.1109/ICCV.2019.00046.
    [23]
    CHANG Xiaobin, HOSPEDALES T M, and XIANG Tao. Multi-level factorisation net for person re-identification[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2109–2118. doi: 10.1109/CVPR.2018.00225.
    [24]
    ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3652–3661. doi: 10.1109/CVPR.2017.389.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (1301) PDF downloads(183) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return