Citation: | Jianxin GAI, Xianfeng XUE, Jingyi WU, Ruixiang NAN. Cooperative Spectrum Sensing Method Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2911-2919. doi: 10.11999/JEIT201005 |
[1] |
DIGHAM F F, ALOUINI M S, and SIMON M K. On the energy detection of unknown signals over fading channels[J]. IEEE Transactions on Communications, 2007, 55(1): 21–24. doi: 10.1109/TCOMM.2006.887483
|
[2] |
YANG Mingchuan, LI Yuan, LIU Xiaofeng, et al. Cyclostationary feature detection based spectrum sensing algorithm under complicated electromagnetic environment in cognitive radio networks[J]. China Communications, 2015, 12(9): 35–44. doi: 10.1109/CC.2015.7275257
|
[3] |
ZHANG Xinzhi, GAO Feifei, CHAI Rong, et al. Matched filter based spectrum sensing when primary user has multiple power levels[J]. China Communications, 2015, 12(2): 21–31. doi: 10.1109/CC.2015.7084399
|
[4] |
王磊, 郑宝玉, 李雷. 基于随机矩阵理论的协作频谱感知[J]. 电子与信息学报, 2009, 31(8): 1925–1929. doi: 10.3724/SP.J.1146.2008.01154
WANG Lei, ZHENG Baoyu, and LI Lei. Cooperative spectrum sensing based on random matrix theory[J]. Journal of Electronics &Information Technology, 2009, 31(8): 1925–1929. doi: 10.3724/SP.J.1146.2008.01154
|
[5] |
许炜阳, 李有均, 徐宏乾, 等. 基于随机矩阵非渐近谱理论的协作频谱感知算法研究[J]. 电子与信息学报, 2018, 40(1): 123–129. doi: 10.11999/JEIT170309
XU Weiyang, LI Youjun, XU Hongqian, et al. Study on cooperative spectrum sensing algorithm based on random matrix non-asymptotic spectral theory[J]. Journal of Electronics &Information Technology, 2018, 40(1): 123–129. doi: 10.11999/JEIT170309
|
[6] |
ZHOU Fuhui, BEAULIEU N C, LI Zan, et al. Feasibility of maximum eigenvalue cooperative spectrum sensing based on Cholesky factorisation[J]. IET Communications, 2016, 10(2): 199–206. doi: 10.1049/iet-com.2015.0252
|
[7] |
THILINA K M, CHOI K W, SAQUIB N, et al. Machine learning techniques for cooperative spectrum sensing in cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(11): 2209–2221. doi: 10.1109/JSAC.2013.131120
|
[8] |
BAO Jianrong, NIE Jianyuan, LIU Chao, et al. Improved blind spectrum sensing by covariance matrix cholesky decomposition and RBF-SVM decision classification at low SNRs[J]. IEEE Access, 2019, 7: 97117–97129. doi: 10.1109/ACCESS.2019.2929316
|
[9] |
陈思吉, 王欣, 申滨. 一种基于支持向量机的认知无线电频谱感知方案[J]. 重庆邮电大学学报: 自然科学版, 2019, 31(3): 313–322. doi: 10.3979/j.issn.1673-825X.2019.03.005
CHEN Siji, WANG Xin, and SHEN Bin. A support vector machine based spectrum sensing for cognitive radios[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(3): 313–322. doi: 10.3979/j.issn.1673-825X.2019.03.005
|
[10] |
YU Chunyan, ZHAO Meng, SONG Meiping, et al. Hyperspectral image classification method based on CNN architecture embedding with hashing semantic feature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1866–1881. doi: 10.1109/JSTARS.2019.2911987
|
[11] |
YU Chunyan, HAN Rui, SONG Meiping, et al. A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2485–2501. doi: 10.1109/JSTARS.2020.2983224
|
[12] |
MAFFEI A, HAUT J M, PAOLETTI M E, et al. A single model CNN for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2516–2529. doi: 10.1109/TGRS.2019.2952062
|
[13] |
CHEN Yushi, ZHU Kaiqiang, ZHU Lin, et al. Automatic design of convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7048–7066. doi: 10.1109/TGRS.2019.2910603
|
[14] |
LIU Chang, WANG Jie, LIU Xuemeng, et al. Deep CM-CNN for spectrum sensing in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2306–2321. doi: 10.1109/JSAC.2019.2933892
|
[15] |
LEE W, KIM M, and CHO D H. Deep cooperative sensing: Cooperative spectrum sensing based on convolutional neural networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3005–3009. doi: 10.1109/TVT.2019.2891291
|
[16] |
张孟伯, 王伦文, 冯彦卿. 基于卷积神经网络的OFDM频谱感知方法[J]. 系统工程与电子技术, 2019, 41(1): 178–186. doi: 10.3969/j.issn.1001-506X.2019.01.25
ZHANG Mengbo, WANG Lunwen, and FENG Yanqing. OFDM spectrum sensing method based on convolutional neural networks[J]. Systems Engineering and Electronics, 2019, 41(1): 178–186. doi: 10.3969/j.issn.1001-506X.2019.01.25
|
[17] |
MARSHALL J A. Neural networks for pattern recognition: By Albert Nigrin, MIT Press, Cambridge, MA: 1993, $45.00 413 pp., ISBN 0-262-14054-3[J]. Neural Networks, 1995, 8(3): 493–494. doi: 10.1016/0893-6080(95)90002-0
|
[18] |
JAMES D A. Reviewed work: Modern applied statistics with S-PLUS by W. N. Venables, B. D. Ripley[J]. Technometrics, 1996, 38(1): 77–78. doi: 10.2307/1268908
|
[19] |
WITTEK P. Pattern Recognition and Neural Networks[M]. WITTEK P. Quantum Machine Learning. Amsterdam: Elsevier, 2014: 63–71. doi: 10.1016/b978-0-12-800953-6.00006-2.
|
[20] |
孙月驰, 李冠. 基于卷积神经网络嵌套模型的人群异常行为检测[J]. 计算机应用与软件, 2019, 36(3): 196–201, 276. doi: 10.3969/j.issn.1000-386x.2019.03.036
SUN Yuechi and LI Guan. Abnormal behavior detection of crowds based on nested model of convolutional neural network[J]. Computer Applications and Software, 2019, 36(3): 196–201, 276. doi: 10.3969/j.issn.1000-386x.2019.03.036
|