Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Jianxin GAI, Xianfeng XUE, Jingyi WU, Ruixiang NAN. Cooperative Spectrum Sensing Method Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2911-2919. doi: 10.11999/JEIT201005
Citation: Jianxin GAI, Xianfeng XUE, Jingyi WU, Ruixiang NAN. Cooperative Spectrum Sensing Method Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2911-2919. doi: 10.11999/JEIT201005

Cooperative Spectrum Sensing Method Based on Deep Convolutional Neural Network

doi: 10.11999/JEIT201005
Funds:  The National Natural Science Foundation of China (61501150), The Natural Science Foundation of Heilongjiang Province (QC2014C074), The Fundamental Research Funds for the Universities in Heilongjiang Province (2018-KYYWF-1656)
  • Received Date: 2020-11-30
  • Rev Recd Date: 2021-03-12
  • Available Online: 2021-03-25
  • Publish Date: 2021-10-18
  • The traditional spectrum sensing method of Convolutional Neural Network (CNN) has a simple network structure which limits the ability of feature extraction. To solve the problem of gradient disappearance, a cooperative spectrum sensing method based on Deep Convolutional Neural Network (DCNN) is proposed in this paper, in which shortcut connections are added to the CNN to realize the deeper network of input level identity radiation. This method transforms the spectrum sensing problem into the image binary classification problem, and performs normalized gray level processing on the covariance matrix of Quadrature Phase Shift Keying (QPSK) signal as the input of DCNN, which trains DCNN model through residual learning and extracts the deep image features of the two-dimensional grayscale image. The testing data is input into the trained model and spectrum sensing based on image classification is completed. The experimental results show that the proposed method has higher detection probability and lower false alarm probability than the traditional spectrum sensing method when the Signal to Noise Ratio (SNR) is low and multiple users collaborate in sensing.
  • loading
  • [1]
    DIGHAM F F, ALOUINI M S, and SIMON M K. On the energy detection of unknown signals over fading channels[J]. IEEE Transactions on Communications, 2007, 55(1): 21–24. doi: 10.1109/TCOMM.2006.887483
    [2]
    YANG Mingchuan, LI Yuan, LIU Xiaofeng, et al. Cyclostationary feature detection based spectrum sensing algorithm under complicated electromagnetic environment in cognitive radio networks[J]. China Communications, 2015, 12(9): 35–44. doi: 10.1109/CC.2015.7275257
    [3]
    ZHANG Xinzhi, GAO Feifei, CHAI Rong, et al. Matched filter based spectrum sensing when primary user has multiple power levels[J]. China Communications, 2015, 12(2): 21–31. doi: 10.1109/CC.2015.7084399
    [4]
    王磊, 郑宝玉, 李雷. 基于随机矩阵理论的协作频谱感知[J]. 电子与信息学报, 2009, 31(8): 1925–1929. doi: 10.3724/SP.J.1146.2008.01154

    WANG Lei, ZHENG Baoyu, and LI Lei. Cooperative spectrum sensing based on random matrix theory[J]. Journal of Electronics &Information Technology, 2009, 31(8): 1925–1929. doi: 10.3724/SP.J.1146.2008.01154
    [5]
    许炜阳, 李有均, 徐宏乾, 等. 基于随机矩阵非渐近谱理论的协作频谱感知算法研究[J]. 电子与信息学报, 2018, 40(1): 123–129. doi: 10.11999/JEIT170309

    XU Weiyang, LI Youjun, XU Hongqian, et al. Study on cooperative spectrum sensing algorithm based on random matrix non-asymptotic spectral theory[J]. Journal of Electronics &Information Technology, 2018, 40(1): 123–129. doi: 10.11999/JEIT170309
    [6]
    ZHOU Fuhui, BEAULIEU N C, LI Zan, et al. Feasibility of maximum eigenvalue cooperative spectrum sensing based on Cholesky factorisation[J]. IET Communications, 2016, 10(2): 199–206. doi: 10.1049/iet-com.2015.0252
    [7]
    THILINA K M, CHOI K W, SAQUIB N, et al. Machine learning techniques for cooperative spectrum sensing in cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(11): 2209–2221. doi: 10.1109/JSAC.2013.131120
    [8]
    BAO Jianrong, NIE Jianyuan, LIU Chao, et al. Improved blind spectrum sensing by covariance matrix cholesky decomposition and RBF-SVM decision classification at low SNRs[J]. IEEE Access, 2019, 7: 97117–97129. doi: 10.1109/ACCESS.2019.2929316
    [9]
    陈思吉, 王欣, 申滨. 一种基于支持向量机的认知无线电频谱感知方案[J]. 重庆邮电大学学报: 自然科学版, 2019, 31(3): 313–322. doi: 10.3979/j.issn.1673-825X.2019.03.005

    CHEN Siji, WANG Xin, and SHEN Bin. A support vector machine based spectrum sensing for cognitive radios[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(3): 313–322. doi: 10.3979/j.issn.1673-825X.2019.03.005
    [10]
    YU Chunyan, ZHAO Meng, SONG Meiping, et al. Hyperspectral image classification method based on CNN architecture embedding with hashing semantic feature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1866–1881. doi: 10.1109/JSTARS.2019.2911987
    [11]
    YU Chunyan, HAN Rui, SONG Meiping, et al. A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2485–2501. doi: 10.1109/JSTARS.2020.2983224
    [12]
    MAFFEI A, HAUT J M, PAOLETTI M E, et al. A single model CNN for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2516–2529. doi: 10.1109/TGRS.2019.2952062
    [13]
    CHEN Yushi, ZHU Kaiqiang, ZHU Lin, et al. Automatic design of convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7048–7066. doi: 10.1109/TGRS.2019.2910603
    [14]
    LIU Chang, WANG Jie, LIU Xuemeng, et al. Deep CM-CNN for spectrum sensing in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2306–2321. doi: 10.1109/JSAC.2019.2933892
    [15]
    LEE W, KIM M, and CHO D H. Deep cooperative sensing: Cooperative spectrum sensing based on convolutional neural networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3005–3009. doi: 10.1109/TVT.2019.2891291
    [16]
    张孟伯, 王伦文, 冯彦卿. 基于卷积神经网络的OFDM频谱感知方法[J]. 系统工程与电子技术, 2019, 41(1): 178–186. doi: 10.3969/j.issn.1001-506X.2019.01.25

    ZHANG Mengbo, WANG Lunwen, and FENG Yanqing. OFDM spectrum sensing method based on convolutional neural networks[J]. Systems Engineering and Electronics, 2019, 41(1): 178–186. doi: 10.3969/j.issn.1001-506X.2019.01.25
    [17]
    MARSHALL J A. Neural networks for pattern recognition: By Albert Nigrin, MIT Press, Cambridge, MA: 1993, $45.00 413 pp., ISBN 0-262-14054-3[J]. Neural Networks, 1995, 8(3): 493–494. doi: 10.1016/0893-6080(95)90002-0
    [18]
    JAMES D A. Reviewed work: Modern applied statistics with S-PLUS by W. N. Venables, B. D. Ripley[J]. Technometrics, 1996, 38(1): 77–78. doi: 10.2307/1268908
    [19]
    WITTEK P. Pattern Recognition and Neural Networks[M]. WITTEK P. Quantum Machine Learning. Amsterdam: Elsevier, 2014: 63–71. doi: 10.1016/b978-0-12-800953-6.00006-2.
    [20]
    孙月驰, 李冠. 基于卷积神经网络嵌套模型的人群异常行为检测[J]. 计算机应用与软件, 2019, 36(3): 196–201, 276. doi: 10.3969/j.issn.1000-386x.2019.03.036

    SUN Yuechi and LI Guan. Abnormal behavior detection of crowds based on nested model of convolutional neural network[J]. Computer Applications and Software, 2019, 36(3): 196–201, 276. doi: 10.3969/j.issn.1000-386x.2019.03.036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (1591) PDF downloads(227) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return