Citation: | YU Bin, XIONG Jun. A Novel WSN Traffic Anomaly Detection Scheme Based on BIRCH[J]. Journal of Electronics & Information Technology, 2022, 44(1): 305-313. doi: 10.11999/JEIT201004 |
[1] |
CHIRAYIL A, MAHARJAN R, and WU C S. Survey on anomaly detection in wireless sensor networks (WSNs)[C]. 2019 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Toyama, Japan, 2019: 150–157. doi: 10.1109/SNPD.2019.8935827.
|
[2] |
FERNANDES G Jr, RODRIGUES J J P C, CARVALHO F L F, et al. A comprehensive survey on network anomaly detection[J]. Telecommunication Systems, 2019, 70(3): 447–489. doi: 10.1007/s11235-018-0475-8
|
[3] |
闻佳, 王宏君, 邓佳, 等. 基于深度学习的异常事件检测[J]. 电子学报, 2020, 48(2): 308–313. doi: 10.3969/j.issn.0372-2112.2020.02.013
WEN Jia, WANG Hongjun, DENG Jia, et al. Abnormal event detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(2): 308–313. doi: 10.3969/j.issn.0372-2112.2020.02.013
|
[4] |
董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/jeit190266
DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/jeit190266
|
[5] |
KADRI F, HARROU F, CHAABANE S, et al. Seasonal ARMA-based SPC charts for anomaly detection: application to emergency department systems[J]. Neurocomputing, 2016, 173: 2102–2114. doi: 10.1016/j.neucom.2015.10.009
|
[6] |
MATSUDA T, MORITA T, KUDO T, et al. Traffic anomaly detection based on robust principal component analysis using periodic traffic behavior[J]. IEICE Transactions on Communications, 2017, E100. B(5): 749–761. doi: 10.1587/transcom.2016EBP3239
|
[7] |
DE LA PUERTA J G, FERREIRA I G, BRINGAS P G, et al. International Joint Conference SOCO’14-CISIS’14-ICEUTE’14[M]. Bilbao, Spain: Springer, 2014: 545–554.
|
[8] |
王婷, 王娜, 崔运鹏, 等. 基于半监督学习的无线网络攻击行为检测优化方法[J]. 计算机研究与发展, 2020, 57(4): 791–802. doi: 10.7544/issn1000-1239.2020.20190880
WANG Ting, WANG Na, CUI Yunpeng, et al. The optimization method of wireless network attacks detection based on semi-supervised learning[J]. Journal of Computer Research and Development, 2020, 57(4): 791–802. doi: 10.7544/issn1000-1239.2020.20190880
|
[9] |
MAZARBHUIYA F A, ALZAHRANI M Y, and GEORGIEVA L. Anomaly detection using agglomerative hierarchical clustering algorithm[C]. International Conference on Information Science and Applications, Singapore, 2018: 475–484. doi: 10.1007/978-981-13-1056-0_48.
|
[10] |
FAROUGHI A and JAVIDAN R. CANF: Clustering and anomaly detection method using nearest and farthest neighbor[J]. Future Generation Computer Systems, 2018, 89: 166–177. doi: 10.1016/j.future.2018.06.031
|
[11] |
章永来, 周耀鉴. 聚类算法综述[J]. 计算机应用, 2019, 39(7): 1869–1882. doi: 10.11772/j.issn.1001-9081.2019010174
ZHANG Yonglai and ZHOU Yaojian. Review of clustering algorithms[J]. Journal of Computer Applications, 2019, 39(7): 1869–1882. doi: 10.11772/j.issn.1001-9081.2019010174
|
[12] |
ZHANG T, RAMAKRISHNAN R, and LIVNY M. BIRCH: a new data clustering algorithm and its applications[J]. Data Mining and Knowledge Discovery, 1997, 1(2): 141–182. doi: 10.1023/A:1009783824328
|
[13] |
PITOLLI G, ANIELLO L, LAURENZA G, et al. Malware family identification with BIRCH clustering[C]. 2017 International Carnahan Conference on Security Technology, Madrid, Spain, 2017: 1–6. doi: 10.1109/CCST.2017.8167802.
|
[14] |
PENG Kai, ZHENG Lixin, XU Xiaolong, et al. Balanced iterative reducing and clustering using hierarchies with principal component analysis (PBirch) for intrusion detection over big data in mobile cloud environment[C]. International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage, Melbourne, Australia, 2018: 166–177. doi: 10.1007/978-3-030-05345-1_14.
|
[15] |
ALKASASSBEH M. A novel hybrid method for network anomaly detection based on traffic prediction and change point detection[J]. Journal of Computer Science, 2018, 14(2): 153–162. doi: 10.3844/jcssp.2018.153.162
|
[16] |
LORBEER B, KOSAREVA A, DEVA B, et al. Variations on the Clustering Algorithm BIRCH[J]. Big Data Research, 2018, 11: 44–53. doi: 10.1016/j.bdr.2017.09.002
|
[17] |
GUO Dongwei, CHEN Jingwen, CHEN Yingjie, et al. LBIRCH: an improved BIRCH algorithm based on link[C]. The 2018 10th International Conference on Machine Learning and Computing, New York, USA, 2018: 74–78. doi: 10.1145/3195106.3195158.
|
[18] |
尚家泽, 安葳鹏, 郭耀丹. 基于阈值的BIRCH算法改进与分析[J]. 重庆邮电大学学报: 自然科学版, 2020, 32(3): 487–494. doi: 10.3979/j.issn.1673-825X.2020.03.019
SHANG Jiaze, AN Weipeng, and GUO Yaodan. BIRCH algorithm improvement and analysis based on threshold value[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2020, 32(3): 487–494. doi: 10.3979/j.issn.1673-825X.2020.03.019
|
[19] |
马春来, 单洪, 马涛. 一种基于簇中心点自动选择策略的密度峰值聚类算法[J]. 计算机科学, 2016, 43(7): 255–258, 280. doi: 10.11896/j.issn.1002-137x.2016.7.046
MA Chunlai, SHAN Hong, and MA Tao. Improved density peaks based clustering algorithm with strategy choosing cluster center automatically[J]. Computer Science, 2016, 43(7): 255–258, 280. doi: 10.11896/j.issn.1002-137x.2016.7.046
|
[20] |
CHEN Yuanfang, GUIZANI M, ZHANG Yan, et al. When traffic flow prediction and wireless big data analytics meet[J]. IEEE Network, 2019, 33(3): 161–167. doi: 10.1109/MNET.2018.1800134
|
[21] |
熊俊, 何宽, 李颖川, 等. 基于优化FAEMD-OSELM的WSN流量预测算法研究[J]. 仪器仪表学报, 2020, 41(9): 262–270. doi: 10.19650/j.cnki.cjsi.J2006636
XIONG Jun, HE Kuan, LI Yingchuan, et al. Research on WSN traffic prediction algorithm based on optimized FAEMD-OSELM[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 262–270. doi: 10.19650/j.cnki.cjsi.J2006636
|
[22] |
ALMOMANI I, AL-KASASBEH B, and AL-AKHRAS M. WSN-DS: A dataset for intrusion detection systems in wireless sensor networks[J]. Journal of Sensors, 2016, 2016: 4731953. doi: 10.1155/2016/4731953
|
[23] |
何明, 仇功达, 周波, 等. 基于改进密度聚类与模式信息挖掘的异常轨迹识别方法[J]. 通信学报, 2017, 38(12): 21–33. doi: 10.11959/j.issn.1000-436x.2017287
HE Ming, QIU Gongda, ZHOU Bo, et al. Abnormal trajectory detection method based on enhanced density clustering and abnormal information mining[J]. Journal on Communications, 2017, 38(12): 21–33. doi: 10.11959/j.issn.1000-436x.2017287
|
[24] |
XIA Hui, FANG Bin, MATTHEW R, et al. A basis evolution framework for network traffic anomaly detection[J]. Computer Networks, 2018, 135: 15–31. doi: 10.1016/j.comnet.2018.01.025
|