Citation: | XU Shengjun, LIU Qiuyuan, SHI Ya, MENG Yuebo, LIU Guanghui, HAN Jiuqiang. Person Re-Identification Based on Diversified Local Attention Network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 211-220. doi: 10.11999/JEIT201003 |
[1] |
YE Mang, SHEN Jianbing, LIN Gaojie, et al. Deep learning for person re-identification: A survey and outlook[J]. arXiv preprint arXiv: 2001.04193, 2020.
|
[2] |
罗浩, 姜伟, 范星, 等. 基于深度学习的行人重识别研究进展[J]. 自动化学报, 2019, 45(11): 2032–2049. doi: 10.16383/j.aas.c180154
LUO Hao, JIANG Wei, FAN Xing, et al. A survey on deep learning based person re-identification[J]. Acta Automatica Sinica, 2019, 45(11): 2032–2049. doi: 10.16383/j.aas.c180154
|
[3] |
LUO Hao, JIANG Wei, GU Youzhi, et al. A strong baseline and batch normalization neck for deep person re-identification[J]. IEEE Transactions on Multimedia, 2020, 22(10): 2597–2609. doi: 10.1109/TMM.2019.2958756
|
[4] |
周智恒, 刘楷怡, 黄俊楚, 等. 一种基于等距度量学习策略的行人重识别改进算法[J]. 电子与信息学报, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336
ZHOU Zhiheng, LIU Kaiyi, HUANG Junchu, et al. Improved metric learning algorithm for person re-identification based on equidistance[J]. Journal of Electronics &Information Technology, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336
|
[5] |
ZHAO Haiyu, TIAN Maoqing, SUN Shuyang, et al. Spindle net: Person re-identification with human body region guided feature decomposition and fusion[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 907–915. doi: 10.1109/CVPR.2017.103.
|
[6] |
ZHENG Liang, HUANG Yujia, LU Huchuan, et al. Pose-invariant embedding for deep person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(9): 4500–4509. doi: 10.1109/TIP.2019.2910414
|
[7] |
LI Jianing, ZHANG Shiliang, TIAN Qi, et al. Pose-guided representation learning for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 622–635. doi: 10.1109/TPAMI.2019.2929036
|
[8] |
SUN Yifan, ZHENG Liang, YANG Yi, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 501–518. doi: 10.1007/978-3-030-01225-0_30.
|
[9] |
LUO Hao, JIANG Wei, ZHANG Xuan, et al. AlignedReID++: Dynamically matching local information for person re-identification[J]. Pattern Recognition, 2019, 94: 53–61. doi: 10.1016/j.patcog.2019.05.028
|
[10] |
WANG Guanshuo, YUAN Yufeng, CHEN Xiong, et al. Learning discriminative features with multiple granularities for person re-identification[C]. The 26th ACM international conference on Multimedia, Seoul, South Korea, 2018: 274–282. doi: 10.1145/3240508.3240552.
|
[11] |
SONG Chunfeng, HUANG Yan, OUYANG Wanli, et al. Mask-guided contrastive attention model for person re-identification[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1179–1188. doi: 10.1109/CVPR.2018.00129.
|
[12] |
ZHANG Zhizheng, LAN Cuiling, ZENG Wenjun, et al. Relation-aware global attention for person re-identification[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 3183–3192. doi: 10.1109/CVPR42600.2020.00325.
|
[13] |
王粉花, 赵波, 黄超, 等. 基于多尺度和注意力融合学习的行人重识别[J]. 电子与信息学报, 2020, 42(12): 3045–3052. doi: 10.11999/JEIT190998
WANG Fenhua, ZHAO Bo, HUANG Chao, et al. Person re-identification based on multi-scale network attention fusion[J]. Journal of Electronics &Information Technology, 2020, 42(12): 3045–3052. doi: 10.11999/JEIT190998
|
[14] |
YANG Wenjie, HUANG Houjing, ZHANG Zhang, et al. Towards rich feature discovery with class activation maps augmentation for person re-identification[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 1389–1398. doi: 10.1109/CVPR.2019.00148.
|
[15] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[16] |
MÜLLER R, KORNBLITH S, and HINTON G. When does label smoothing help?[C]. The 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019: 4694–4703.
|
[17] |
LI Shuang, BAK S, CARR P, et al. Diversity regularized spatiotemporal attention for video-based person re-identification[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 369–378. doi: 10.1109/CVPR.2018.00046.
|
[18] |
ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1116–1124. doi: 10.1109/ICCV.2015.133.
|
[19] |
RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]. European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 17–35. doi: 10.1007/978-3-319-48881-3_2.
|
[20] |
LI Wei, ZHAO Rui, XIAO Tong, et al. Deepreid: Deep filter pairing neural network for person re-identification[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 152–159. doi: 10.1109/CVPR.2014.27.
|
[21] |
ZHENG Weishi, LI Xiang, XIANG Tao, et al. Partial person re-identification[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 4678–4686. doi: 10.1109/ICCV.2015.531.
|
[22] |
ZHOU Jieming, ROY S K, FANG Pengfei, et al. Cross-correlated attention networks for person re-identification[J]. Image and Vision Computing, 2020, 100: 103931. doi: 10.1016/j.imavis.2020.103931
|
[23] |
杨婉香, 严严, 陈思, 等. 基于多尺度生成对抗网络的遮挡行人重识别方法[J]. 软件学报, 2020, 31(7): 1943–1958. doi: 10.13328/j.cnki.jos.005932
YANG Wanxiang, YAN Yan, CHEN Si, et al. Multi-scale generative adversarial network for person re-identification under occlusion[J]. Journal of Software, 2020, 31(7): 1943–1958. doi: 10.13328/j.cnki.jos.005932
|
[24] |
LIAO Shengcai, JAIN A K, and LI S Z. Partial face recognition: Alignment-free approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5): 1193–1205. doi: 10.1109/TPAMI.2012.191
|
[25] |
HE Lingxiao, LIANG Jian, LI Haiqing, et al. Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7073–7082. doi: 10.1109/CVPR.2018.00739.
|
[26] |
HE Lingxiao, SUN Zhenan, ZHU Yuhao, et al. Recognizing partial biometric patterns[J]. arXiv preprint arXiv: 1810.07399, 2018.
|
[27] |
MIAO Jiaxu, WU Yu, LIU Ping, et al. Pose-guided feature alignment for occluded person re-identification[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019: 542–551. doi: 10.1109/ICCV.2019.00063.
|
[28] |
SUN Yifan, XU Qin, LI Yali, et al. Perceive where to focus: Learning visibility-aware part-level features for partial person re-identification[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 393–402. doi: 10.1109/CVPR.2019.00048.
|
[29] |
SUN Yifan, ZHENG Liang, DENG Weijian, et al. Svdnet for pedestrian retrieval[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 3820–3828. doi: 10.1109/ICCV.2017.410.
|
[30] |
SHEN Yantao, LI Hongsheng, YI Shuai, et al. Person re-identification with deep similarity-guided graph neural network[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 508–526. doi: 10.1007/978-3-030-01267-0_30.
|
[31] |
CHEN Binghui, DENG Weihong, and HU Jiani. Mixed high-order attention network for person re-identification[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019: 371–381. doi: 10.1109/ICCV.2019.00046.
|
[32] |
DAI Zuozhuo, CHEN Mingqiang, GU Xiaodong, et al. Batch DropBlock network for person re-identification and beyond[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019: . 3690-3700. doi: 10.1109/ICCV.2019.00379.
|