Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Chang XI, Zhiming CAI, Jun YUAN. Passive Tracking Method with Two-hierarchy Sampling Based on Leg-by-leg Maneuver[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2805-2814. doi: 10.11999/JEIT200975
Citation: Chang XI, Zhiming CAI, Jun YUAN. Passive Tracking Method with Two-hierarchy Sampling Based on Leg-by-leg Maneuver[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2805-2814. doi: 10.11999/JEIT200975

Passive Tracking Method with Two-hierarchy Sampling Based on Leg-by-leg Maneuver

doi: 10.11999/JEIT200975
  • Received Date: 2020-11-13
  • Rev Recd Date: 2021-05-31
  • Available Online: 2021-06-22
  • Publish Date: 2021-10-18
  • According to the low sampling efficiency of particle filter track before detecting in high dimension state space with bearing-frequency measurements of passive sonar, a two-hierarchy sampling method based on the observability of leg-by-leg maneuver is proposed. Firstly, the observability of leg-by-leg maneuver is analyzed. Secondly, the target motion model in polar coordinate system is build. Based on the uniform distribution of the distance and normal velocity of particles relative to the observation station, the method of mapping the target state vector in polar coordinate system to rectangular coordinate system is proposed. Finally, in order to improve the convergence of the filter, the covariance matrix of process noise is adaptively adjusted according to the spatial distribution of particle. Simulation results show that, compared with the traditional method, the proposed method can increase the filter convergence rate by about 47.6%, reduce the distance estimation error by about 329 m and reduce the convergence time by about 450 s.
  • loading
  • [1]
    HO K C and CHAN Y T. An asymptotically unbiased estimator for bearings-only and Doppler-bearing target motion analysis[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 809–822. doi: 10.1109/TSP.2005.861776
    [2]
    LEE M H, MOON J H, KIM I S, et al. Pre-processing faded measurements for bearing-and-frequency target motion analysis[J]. International Journal of Control, Automation, and Systems, 2008, 6(3): 424–433.
    [3]
    SALMOND D J and BIRCH H. A particle filter for track-before-detect[C]. 2001 American Control Conference, Arlington, USA, 2001: 3753–3760.
    [4]
    RUTTEN M G, GORDON N J, and MASKELL S. Efficient particle-based track-before-detect in Rayleigh noise[C]. The 7th International Conference on Information Fusion, Stockholm, Sweden, 2004.
    [5]
    BESKOS A, CRISAN D, and JASRA A. On the stability of sequential Monte Carlo methods in high dimensions[J]. The Annals of Applied Probability, 2014, 24(4): 1396–1445.
    [6]
    CHEN Z. Bayesian filtering: From Kalman filters to particle filters, and beyond[R]. Hamilton: McMaster University, 2003.
    [7]
    DAUM F and HUANG J. Curse of dimensionality and particle filters[C]. 2003 IEEE Aerospace Conference Proceedings, Big Sky, USA, 2003: 1979–1993.
    [8]
    SEPTIER F, PANG S K, CARMI A, et al. On MCMC-based particle methods for Bayesian filtering: Application to multitarget tracking[C]. The 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Aruba, Netherland Antilles, 2009: 1280–1287.
    [9]
    梁新华, 潘泉, 杨峰, 等. 基于两级采样的粒子滤波检测前跟踪算法[J]. 系统工程与电子技术, 2011, 33(9): 1921–1926. doi: 10.3969/j.issn.1001-506X.2011.09.02

    LIANG Xinhua, PAN Quan, YANG Feng, et al. Particle filter track-before-detect algorithm based on tow-hierarchy sampling[J]. Systems Engineering and Electronics, 2011, 33(9): 1921–1926. doi: 10.3969/j.issn.1001-506X.2011.09.02
    [10]
    梁新华, 梁彦, 潘泉, 等. 一种基于局部搜索采样的粒子滤波检测前跟踪算法[J]. 控制与决策, 2012, 27(12): 1912–1916. doi: 10.13195/j.cd.2012.12.155.liangxh.019

    LIANG Xinhua, LIANG Yan, PAN Quan, et al. A particle filter track-before-detect algorithm based on local search sampling[J]. Control and Decision, 2012, 27(12): 1912–1916. doi: 10.13195/j.cd.2012.12.155.liangxh.019
    [11]
    CASELLA G and ROBERT C P. Rao-Blackwellisation of sampling schemes[J]. Biometrika, 1996, 83(1): 81–94. doi: 10.1093/biomet/83.1.81
    [12]
    LI W and JIA Y. Rao-Blackwellised unscented particle filtering for jump Markov non-linear systems: An ${H_\infty }$ approach[J]. IET Signal Processing, 2011, 5(2): 187–193. doi: 10.1049/iet-spr.2009.0306
    [13]
    AMOR N, CHEBBI S, and BOUAYNAYA N. A comparative study of particle filter, PMCMC and mixture particle filter methods for tracking in high dimensional state spaces[C]. The 3rd International Conference on Automation, Control, Engineering and Computer Science, 2016: 846–850.
    [14]
    BESKOS A, CRISAN D, JASRA A, et al. A stable particle filter for a class of high-dimensional state-space models[J]. Advances in Applied Probability, 2017, 49(1): 24–48. doi: 10.1017/apr.2016.77
    [15]
    BUGALLO M F and DJURIĆ P M. Particle filtering in high-dimensional systems with Gaussian approximations[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 8013–8017.
    [16]
    FAWCETT J A. TMA Performance for Towed Arrays of Low Manoeuvrability[M]. CHAN Y T. Underwater Acoustic Data Processing. Dordrecht: Springer, 1989: 467–472.
    [17]
    LE CADRE J E and JAUFFRET C. Discrete-time observability and estimability analysis for bearings-only target motion analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 178–201. doi: 10.1109/7.570737
    [18]
    JAUFFRET C and PILLON D. Observability in passive target motion analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1290–1300. doi: 10.1109/7.543850
    [19]
    RISTIC B and ARULAMPALAM M S. Tracking a manoeuvring target using angle-only measurements: Algorithms and performance[J]. Signal Processing, 2003, 83(6): 1223–1238. doi: 10.1016/S0165-1684(03)00042-2
    [20]
    BECKER K. A general approach to TMA observability from angle and frequency measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 487–494. doi: 10.1109/7.481293
    [21]
    夏佩伦, 李长文. 水下目标跟踪与攻击新理论[M]. 北京: 国防工业出版社, 2016: 86–91.

    XIA Peilun and LI Changwen. New Theory of Underwater Target Tracking and Attack[M]. Beijing: National Defense Industry Press, 2016: 86–91.
    [22]
    杜选民, 周胜增, 高源. 声纳阵列信号处理技术[M]. 北京: 电子工业出版社, 2018: 165–166.

    DU Xuanmin, ZHOU Shengzeng, and GAO Yuan. Array Signal Processing Techniques for Sonar[M]. Beijing: Electronic Industry Press, 2018: 165–166.
    [23]
    盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 3版. 北京: 高等教育出版社, 2001.
    [24]
    AIDALA V J and HAMMEL S E. Utilization of modified polar coordinates for bearings-only tracking[J]. IEEE Transactions on Automatic Control, 1983, 28(3): 283–294. doi: 10.1109/TAC.1983.1103230
    [25]
    ARULAMPALAM S and RISTIC B. Comparison of the particle filter with range-parameterized and modified polar EKFs for angle-only tracking[C]. SPIE 4048, Signal and Data Processing of Small Targets 2000, Orlando, United States, 2000: 288–299. doi: 10.1117/12.391985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (516) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return