Advanced Search
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Geliang YANG, Bin LI. Wide-IF-bandwidth CMOS Down-conversion Mixer MMIC[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1603-1608. doi: 10.11999/JEIT200957
Citation: Geliang YANG, Bin LI. Wide-IF-bandwidth CMOS Down-conversion Mixer MMIC[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1603-1608. doi: 10.11999/JEIT200957

Wide-IF-bandwidth CMOS Down-conversion Mixer MMIC

doi: 10.11999/JEIT200957
Funds:  S&T Program of Hebei (18960202D)
  • Received Date: 2020-11-09
  • Rev Recd Date: 2021-03-25
  • Available Online: 2021-04-13
  • Publish Date: 2021-06-18
  • A wide-Intermediate-Frequency (IF) down-conversion mixer operating in millimeter-wave band is proposed. The mixer is designed based on a passive double-balanced structure integrating Radio-Frequency (RF) and Local-Oscillator (LO) baluns. To optimize the performances in terms of the Conversion Gain (CG), bandwidth and isolations of the mixer, the gate-inductive technique is employed. The measured results show that the mixer features a wide IF bandwidth from 0.5 to 12 GHz. A measured CG of –8.5~–5.5 dB is achieved within such a wide IF band at a LO power (PLO) of 4 dBm and a LO frequency (fLO) of 30 GHz. The proposed mixer also achieves a CG with a ripple of 2 dB from –7.9 to –5.9 dB in a wide RF band (fRF) from 25 to 45 GHz at a PLO of 4 dBm and a fixed IF frequency (fIF) of 0.5 GHz. The measured LO-to-IF, LO-to-RF and RF-to-IF isolations are better than 42, 50 and 43 dB, respectively. The chip is fabricated in TSMC 90 nm CMOS process with an area of 0.4 mm2.
  • loading
  • [1]
    WANG Keping, WANG Zhigong, LEI Xuemei, et al. A low-loss image-reject mixer using source follower isolation method for DRM/DAB tuner applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58(11): 729–733. doi: 10.1109/TCSII.2011.2168014
    [2]
    WANG Keping, QIU Lei, KOO J, et al. Design of 1.8-mW PLL-free 2.4-GHz receiver utilizing temperature-compensated FBAR resonator[J]. IEEE Journal of Solid-State Circuits, 2018, 53(6): 1628–1639. doi: 10.1109/JSSC.2018.2801829
    [3]
    WANG Keping, OTIS B, and WANG Zhigong. A 580-μW 2.4-GHz ZigBee receiver front end with transformer coupling technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(2): 174–176. doi: 10.1109/LMWC.2017.2787064
    [4]
    吴大正. 信号与线性系统分析[M]. 3版. 北京: 高等教育出版社, 2000: 28–33.
    [5]
    LIN C M, LIN H K, LAI Y A, et al. A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(2): 95–97. doi: 10.1109/LMWC.2008.2011330
    [6]
    ISSAKOV V, THIEDE A, VERWEYEN L, et al. 0.5–25 GHz inductorless single-ended resistive mixer in 0.13 μm CMOS[J]. Electronics Letters, 2009, 45(2): 108–110. doi: 10.1049/el20092599
    [7]
    LEE J G, PARK G H, BYEON C W, et al. 60 GHz Up-conversion mixer with wide IF bandwidth using transformer-based negative feedback in 65-nm CMOS[C]. 2019 IEEE Asia-Pacific Microwave Conference, Singapore, 2019: 732–734. doi: 10.1109/APMC46564.2019.9038419.
    [8]
    HUANG C Y, WU K L, HU R, et al. Analysis of wide-IF-band 65 nm-CMOS mixer for 77–110 GHz radio-astronomical receiver design[J]. IET Circuits, Devices & Systems, 2019, 13(3): 406–413. doi: 10.1049/iet-cds.2018.5269
    [9]
    CHIANG P Y, SU C W, LUO S Y, et al. Wide-IF-band CMOS mixer design[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(4): 831–840. doi: 10.1109/TMTT.2010.2041575
    [10]
    TSAI H T, TSENG P L, CHANG Chewei, et al. Design of wide-IF-Band CMOS mixer with LO multiplier[C]. 2013 Asia-Pacific Microwave Conference Proceedings, Seoul, 2013: 176–178. doi: 10.1109/APMC.2013.6695085.
    [11]
    NGUYEN T T, RIDDLE A, FUJII K, et al. Development of wideband and high IIP3 millimeter-wave mixers[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8): 3071–3078. doi: 10.1109/TMTT.2017.2669042
    [12]
    ZHANG Tiedi, LIU Xiansuo, WANG Yuehang, et al. Mixing it up: A double-balanced mixer with wide RF and IF bandwidth[J]. IEEE Microwave Magazine, 2018, 19(1): 106–111. doi: 10.1109/MMM.2017.2759659
    [13]
    YANG Geliang, CHEN Rui, and WANG Keping. A CMOS Balun with common ground and artificial dielectric compensation achieving 79.5% fractional bandwidth and <2° phase imbalance[C]. 2020 IEEE/MTT-S International Microwave Symposium, Los Angeles, USA, 2020: 1319–1322. doi: 10.1109/IMS30576.2020.9223981.
    [14]
    YANG Geliang, TANG Kai, and WANG Zhigong. 3.6–8.1 GHz CMOS balun with 1.8° in-band phase difference by using capacitive balance compensation technique[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1548–1551. doi: 10.1002/mop.32228
    [15]
    YANG Geliang, WANG Zhigong, LI Zhiqun, et al. Balance-compensated asymmetric marchand baluns on silicon for MMICs[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(6): 391–393. doi: 10.1109/LMWC.2014.2313719
    [16]
    YU Y H, YANG Y S, and CHEN Y J E. A compact wideband CMOS low noise amplifier with gain flatness enhancement[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 502–509. doi: 10.1109/JSSC.2010.2040111
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (894) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return