Advanced Search
Volume 44 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
HE Jian, GUO Zelong, LIU Leyuan, SU Yuhan. Human Activity Recognition Technology Based on Sliding Window and Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 168-177. doi: 10.11999/JEIT200942
Citation: HE Jian, GUO Zelong, LIU Leyuan, SU Yuhan. Human Activity Recognition Technology Based on Sliding Window and Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 168-177. doi: 10.11999/JEIT200942

Human Activity Recognition Technology Based on Sliding Window and Convolutional Neural Network

doi: 10.11999/JEIT200942
Funds:  The National Key R&D Program of China (2020YFB2104400), The National Natural Science Foundation of China (61602016), Beijing Science and Technology Plan (D171100004017003)
  • Received Date: 2020-11-04
  • Rev Recd Date: 2021-06-02
  • Available Online: 2021-08-24
  • Publish Date: 2022-01-10
  • Due to the lack of unified human activity model and related specifications, the existing wearable human activity recognition technology uses different types, numbers and deployment locations of sensors, and affects its promotion and application. Based on the analysis of human activity skeleton characteristics and human activity mechanics, a human activity model based on Cartesian coordinates is established and the normalization method of activity sensor deployment location and activity data in the model is standardized; Secondly, a sliding window technique is introduced to establish a mapping method to convert human activity data into RGB bitmap, and a Convolutional Neural Network is designed for Human Activity Recognition (HAR-CNN); Finally, a HAR-CNN instance is created and experimentally tested based on the public human activity dataset Opportunity. The experimental results show that HAR-CNN achieves the F1 values of 90% and 92% for periodic repetitive activity and discrete human activity recognition, respectively, while the algorithm has good operational efficiency.
  • loading
  • [1]
    SINGH R and SRIVASTAVA R. Some contemporary approaches for human activity recognition: A survey[C]. 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control, Mathura, India, 2020: 544–548.
    [2]
    GOTA D I, PUSCASIU A, FANCA A, et al. Human-Computer Interaction using hand gestures[C]. 2020 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 2020: 1–5.
    [3]
    HU Ning, SU Shen, TANG Chang, et al. Wearable-sensors based activity recognition for smart human healthcare using internet of things[C]. 2020 International Wireless Communications and Mobile Computing, Limassol, Cyprus, 2020: 1909–1915. doi: 10.1109/IWCMC48107.2020.9148197.
    [4]
    NATANI A, SHARMA A, PERUMA T, et al. Deep learning for multi-resident activity recognition in ambient sensing smart homes[C]. The IEEE 8th Global Conference on Consumer Electronics, Osaka, Japan, 2019: 340–341.
    [5]
    RODRIGUES R, BHARGAVA N, VELMURUGAN R, et al. Multi-timescale trajectory prediction for abnormal human activity detection[C]. 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 2615–2623.
    [6]
    DEEP S and ZHENG Xi. Leveraging CNN and transfer learning for vision-based human activity recognition[C]. The 29th International Telecommunication Networks and Applications Conference, Auckland, New Zealand, 2019: 1–4.
    [7]
    邓诗卓, 王波涛, 杨传贵, 等. CNN多位置穿戴式传感器人体活动识别[J]. 软件学报, 2019, 30(3): 718–737. doi: 10.13328/j.cnki.jos.005685

    DENG Shizhuo, WANG Botao, YANG Chuangui, et al. Convolutional neural networks for human activity recognition using multi-location wearable sensors[J]. Journal of Software, 2019, 30(3): 718–737. doi: 10.13328/j.cnki.jos.005685
    [8]
    WANG Yan, CANG Shuang, and YU Hongnian. A survey on wearable sensor modality centred human activity recognition in health care[J]. Expert Systems with Applications, 2019, 137: 167–190. doi: 10.1016/j.eswa.2019.04.057
    [9]
    BAO Ling and INTILLE S S. Activity recognition from user-annotated acceleration data[C]. The 2nd International Conference on Pervasive Computing, Vienna, Austria, 2004: 1–17.
    [10]
    NURMI P, FLORÉEN P, PRZYBILSKI M, et al. A framework for distributed activity recognition in ubiquitous systems[C]. International Conference on Artificial Intelligence, Las Vegas, USA, 2005: 650–655.
    [11]
    RAVI N, DANDEKAR N, MYSORE P, et al. Activity recognition from accelerometer data[C]. The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, Pittsburgh, USA, 2005: 1541–1546.
    [12]
    何坚, 周明我, 王晓懿. 基于卡尔曼滤波与k-NN算法的可穿戴跌倒检测技术研究[J]. 电子与信息学报, 2017, 39(11): 2627–2634. doi: 10.11999/JEIT170173

    HE Jian, ZHOU Mingwo, and WANG Xiaoyi. Wearable method for fall detection based on Kalman filter and k-NN algorithm[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2627–2634. doi: 10.11999/JEIT170173
    [13]
    TRAN D N and PHAN D D. Human activities recognition in android smartphone using support vector machine[C]. The 7th International Conference on Intelligent Systems, Modelling and Simulation, Bangkok, Thailand, 2016: 64–68.
    [14]
    HANAI Y, NISHIMURA J, and KURODA T. Haar-like filtering for human activity recognition using 3D accelerometer[C]. The 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop. Marco Island, USA, 2009: 675–678.
    [15]
    ORDÓÑEZ F J and ROGGEN D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1): 115. doi: 10.3390/s16010115
    [16]
    何坚, 张子浩, 王伟东. 基于ZigBee和CNN的低功耗跌倒检测技术[J]. 天津大学学报: 自然科学与工程技术版, 2019, 52(10): 1045–1054. doi: 10.11784/tdxbz201808059

    HE Jian, ZHANG Zihao, and WANG Weidong. Low-power fall detection technology based on ZigBee and CNN algorithm[J]. Journal of Tianjin University:Science and Technology, 2019, 52(10): 1045–1054. doi: 10.11784/tdxbz201808059
    [17]
    GJORESKI H, LUSTREK M, and GAMS M. Accelerometer placement for posture recognition and fall detection[C]. 2011 Seventh International Conference on Intelligent Environments, Nottingham, UK, 2011: 47-54.
    [18]
    WANG Changhong, LU Wei, NARAYANAN M R, et al. Low-power fall detector using triaxial accelerometry and barometric pressure sensing[J]. IEEE Transactions on Industrial Informatics, 2016, 12(6): 2302–2311. doi: 10.1109/TII.2016.2587761
    [19]
    GJORESKI H, KOZINA S, GAMS M, et al. RAReFall - Real-time activity recognition and fall detection system[C]. 2014 IEEE International Conference on Pervasive Computing and Communication Workshops, Budapest, Hungary, 2014: 145-147.
    [20]
    SHOTTON J, FITZGIBBON A, COOK M, et al. Real-time human pose recognition in parts from single depth images[C]. The CVPR 2011, Colorado, USA, 2011: 1297–1304. doi: 10.1109/CVPR.2011.5995316.
    [21]
    KONIUSZ P, CHERIAN A, and PORIKLI F. Tensor representations via kernel linearization for action recognition from 3D skeletons[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2106: 37–53.
    [22]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [23]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
    [24]
    SIMONYAN K and ZISSERMAN A. Very Deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2015.
    [25]
    [26]
    MURAD A and PYUN J Y. Deep recurrent neural networks for human activity recognition[J]. Sensors, 2017, 17(11): 2556. doi: 10.3390/s17112556
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (1951) PDF downloads(231) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return