Citation: | LIU Aodi, DU Xuehui, WANG Na, SHAN Dibin, ZHANG Liu. Access Control Policy Generation Method Based on Access Control Logs[J]. Journal of Electronics & Information Technology, 2022, 44(1): 324-331. doi: 10.11999/JEIT200924 |
[1] |
房梁, 殷丽华, 郭云川, 等. 基于属性的访问控制关键技术研究综述[J]. 计算机学报, 2017, 40(7): 1680–1698. doi: 10.11897/SP.J.1016.2017.01680
FANG Liang, YIN Lihua, GUO Yunchuan, et al. A survey of key technologies in attribute-based access control scheme[J]. Chinese Journal of Computers, 2017, 40(7): 1680–1698. doi: 10.11897/SP.J.1016.2017.01680
|
[2] |
刘敖迪, 杜学绘, 王娜, 等. 基于区块链的大数据访问控制机制[J]. 软件学报, 2019, 30(9): 2636–2654.
LIU Aodi, DU Xuehui, WANG Na, et al. Blockchain-based access control mechanism for big data[J]. Journal of Software, 2019, 30(9): 2636–2654.
|
[3] |
XU Zhongyuan and STOLLER S D. Mining attribute-based access control policies[J]. IEEE Transactions on Dependable and Secure Computing, 2015, 12(5): 533–545. doi: 10.1109/TDSC.2014.2369048
|
[4] |
Guide to Attribute Based Access Control (ABAC) Definition and Considerations[EB/OL]. NIST Special Publication 800–162. http://www.nist.gov/manuscript-publication-search.cfm?pub_id=915660,2014.
|
[5] |
Market Trends: Cloud-based security services market[EB/OL]. https://www.gartner.com/doc/2607617, 2013.
|
[6] |
LIU Aodi, DU Xuehui, and WANG Na. Access control role evolution mechanism for open computing environment[J]. Electronics, 2020, 9(3): 517. doi: 10.3390/electronics9030517
|
[7] |
BLUNDO C, CIMATO S, and SINISCALCHI L. PRUCC-RM: Permission-role-usage cardinality constrained role mining[C]. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 2017: 149–154.
|
[8] |
DONG Lijun, WANG Yi, LIU Ran, et al. Toward edge minability for role mining in bipartite networks[J]. Physica A:Statistical Mechanics and its Applications, 2016, 462: 274–286. doi: 10.1016/j.physa.2016.06.068
|
[9] |
VAVILIS S, EGNER A I, PETKOVIĆ M, et al. Role mining with missing values[C]. 2016 11th International Conference on Availability, Reliability and Security (ARES), Salzburg, Austria, 2016: 167–176.
|
[10] |
MITRA B, SURAL S, VAIDYA J, et al. Mining temporal roles using many-valued concepts[J]. Computers & Security, 2016, 60: 79–94.
|
[11] |
周超, 任志宇, 毋文超. 基于形式概念分析的语义角色挖掘算法[J]. 计算机科学, 2018, 45(12): 117–122,129.
ZHOU Chao, REN Zhiyu, and WU Wenchao. Semantic roles mining algorithms based on formal concept analysis[J]. Computer Science, 2018, 45(12): 117–122,129.
|
[12] |
MEDVET E, BARTOLI A, CARMINATI B, et al. Evolutionary inference of attribute-based access control policies[C]. 8th International Conference on Evolutionary Multi-Criterion Optimization, Guimarães, Portugal, 2015: 351–365.
|
[13] |
KARIMI L and JOSHI J. An unsupervised learning based approach for mining attribute based access control policies[C]. 2018 IEEE International Conference on Big Data (Big Data), Seattle, USA, 2018: 1427–1436.
|
[14] |
IYER P and MASOUMZADEH A. Mining positive and negative attribute-based access control policy rules[C]. The 23nd ACM on Symposium on Access Control Models and Technologies, Indiana, USA, 2018: 161–172.
|
[15] |
MOCANU D, TURKMEN F, and LIOTTA A. Towards ABAC policy mining from logs with deep learning[C]. The 18th International Multiconference, Slovenia, 2015.
|
[16] |
NAROUEI M, KHANPOUR H, and TAKABI H. Identification of access control policy sentences from natural language policy documents[C]. 31st IFIP Annual Conference on Data and Applications Security and Privacy, Philadelphia, USA, 2017: 82–100.
|
[17] |
NAROUEI M, KHANPOUR H, TAKABI H, et al. Towards a top-down policy engineering framework for attribute-based access control[C]. The 22nd ACM on Symposium on Access Control Models and Technologies, Indiana, USA, 2017: 103–114.
|
[18] |
ALOHALY M, TAKABI H, and BLANCO E. A deep learning approach for extracting attributes of ABAC policies[C]. The 23nd ACM on Symposium on Access Control Models and Technologies, Indiana, USA, 2018: 137–148.
|
[19] |
HUANG Xiaojuan, ZHANG Li, WANG Bangjun, et al. Feature clustering based support vector machine recursive feature elimination for gene selection[J]. Applied Intelligence, 2018, 48(3): 594–607. doi: 10.1007/s10489-017-0992-2
|
[20] |
RAO Haidi, SHI Xianzhang, RODRIGUE A K, et al. Feature selection based on artificial bee colony and gradient boosting decision tree[J]. Applied Soft Computing, 2019, 74: 634–642. doi: 10.1016/j.asoc.2018.10.036
|
[21] |
KUANG Wei, CHAN Y L, TSANG S H, et al. Machine learning-based fast intra mode decision for HEVC screen content coding via decision trees[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(5): 1481–1496. doi: 10.1109/TCSVT.2019.2903547
|