Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Jian XIAO, Sizhuo LI, Wei DONG, Qinghua LI, Fang HU. An Identity Recognition Method Based on ElectroCardioGraph and PhotoPlethysmoGraph Feature Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3010-3017. doi: 10.11999/JEIT200904
Citation: Jian XIAO, Sizhuo LI, Wei DONG, Qinghua LI, Fang HU. An Identity Recognition Method Based on ElectroCardioGraph and PhotoPlethysmoGraph Feature Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3010-3017. doi: 10.11999/JEIT200904

An Identity Recognition Method Based on ElectroCardioGraph and PhotoPlethysmoGraph Feature Fusion

doi: 10.11999/JEIT200904
Funds:  The Key Project of Research and Development Program of Shaanxi Province of China (2021GY-54),Xi’an Science and Technology Innovation Guiding Project (20180504YD23CG29(1))
  • Received Date: 2020-10-22
  • Rev Recd Date: 2021-03-16
  • Available Online: 2021-04-12
  • Publish Date: 2021-10-18
  • Because single mode ElectroCardioGraph (ECG) and PhotoPlethysmoGraph(PPG) existed problem with the low recognition accuracy, not considering intra-class correlation, this paper proposes a recognition method based on the Discriminant Correlation Analysis (DCA) for the feature layer fusion of the ECG and PPG combined feature matrix and the fusion of the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers at the decision layer. The experimental results show that the use of fusion features (ECG-PPG) and fusion the classifier (KNN-SVM) method can classify and recognize 23 subjects with an accuracy of 98.2%, and the recognition accuracy is better than single-modal recognition in the conventional environment. It provides an effective model for multimodal biometric identification.
  • loading
  • [1]
    KAUR G, SINGH G, and KUMAR V. A review on biometric recognition[J]. International Journal of Bio-Science and Bio-Technology, 2014, 6(4): 69–76. doi: 10.14257/ijbsbt.2014.6.4.07
    [2]
    ROSS A A, NANDAKUMAR K J, and JAIN A K. Handbook of Multibiometrics[M]. New York: Springer, 2006: 37–58.
    [3]
    ROSS A and JAIN A. Information fusion in biometrics[J]. Pattern Recognition Letters, 2003, 24(13): 2115–2125. doi: 10.1016/S0167-8655(03)00079-5
    [4]
    张敏贵, 潘泉, 张洪才, 等. 多生物特征识别[J]. 信息与控制, 2002, 31(6): 524–528. doi: 10.3969/j.issn.1002-0411.2002.06.010

    ZHANG Mingui, PAN Quan, ZHANG Hongcai, et al. Multibiometrics identification techniques[J]. Information and Control, 2002, 31(6): 524–528. doi: 10.3969/j.issn.1002-0411.2002.06.010
    [5]
    CHAA M, BOUKEZZOULA N E, and MERAOUMIA A. Features-level fusion of reflectance and illumination images in finger-knuckle-print identification system[J]. International Journal on Artificial Intelligence Tools, 2018, 27(3): 1850007. doi: 10.1142/S0218213018500070
    [6]
    CHEN Junkai, CHEN Zenghai, CHI Zheru, et al. Facial expression recognition in video with multiple feature fusion[J]. IEEE Transactions on Affective Computing, 2018, 9(1): 38–50. doi: 10.1109/TAFFC.2016.2593719
    [7]
    GUPTA P. Multibiometric authentication system using slap fingerprints, palm dorsal vein, and hand geometry[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9777–9784. doi: 10.1109/TIE.2018.2823686
    [8]
    HAMMAD M and WANG Kuanquan. Parallel score fusion of ECG and fingerprint for human authentication based on convolution neural network[J]. Computers & Security, 2019, 81: 107–122. doi: 10.1016/j.cose.2018.11.003
    [9]
    ARTEAGA-FALCONI J S, AL OSMAN H, and EL SADDIK A. ECG and fingerprint bimodal authentication[J]. Sustainable Cities and Society, 2018, 40: 274–283. doi: 10.1016/j.scs.2017.12.023
    [10]
    BASHAR K. ECG and EEG based multimodal biometrics for human identification[C]. 2018 IEEE International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 4345–4350.
    [11]
    杨宜蒙. 基于ECG和PPG信号身份识别算法的研究[D]. [硕士论文], 哈尔滨工业大学, 2016.

    YANG Yimeng. A study of ECG & PPG-based biometrics technology[D]. [Master dissertation], Harbin Institute of Technology, 2016.
    [12]
    SUN Quansen, ZENG Shenggen, LIU Yan, et al. A new method of feature fusion and its application in image recognition[J]. Pattern Recognition, 2005, 38(12): 2437–2448. doi: 10.1016/j.patcog.2004.12.013
    [13]
    CORREA N M, ADALI T, LI Yiou, et al. Canonical correlation analysis for data fusion and group inferences[J]. IEEE Signal Processing Magazine, 2010, 27(4): 39–50. doi: 10.1109/MSP.2010.936725
    [14]
    HAGHIGHAT M, ABDEL-MOTTALEB M, and ALHALABI W. Fully automatic face normalization and single sample face recognition in unconstrained environments[J]. Expert Systems with Applications, 2016, 47: 23–34. doi: 10.1016/j.eswa.2015.10.047
    [15]
    GAO Xizhan, SUN Quansen, and YANG Jing. MRCCA: A novel CCA based method and its application in feature extraction and fusion for matrix data[J]. Applied Soft Computing, 2018, 62: 45–56. doi: 10.1016/j.asoc.2017.10.008
    [16]
    胡敏, 滕文娣, 王晓华, 等. 融合局部纹理和形状特征的人脸表情识别[J]. 电子与信息学报, 2018, 40(6): 1338–1344. doi: 10.11999/JEIT170799

    HU Min, TENG Wendi, WANG Xiaohua, et al. Facial expression recognition based on local texture and shape features[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1338–1344. doi: 10.11999/JEIT170799
    [17]
    GUO Manshan, YANG Xu, ZHANG Feng, et al. Supervised dictionary learning supported classifier with feature fusion scheme to noninvasively detect TRISO-particle defects[J]. Journal of Nuclear Materials, 2019, 523: 43–50. doi: 10.1016/j.jnucmat.2019.05.040
    [18]
    SCHOTT J R. Principles of multivariate analysis: A user’s perspective[J]. Journal of the American Statistical Association, 2002, 97(458): 657–658. doi: 10.1198/jasa.2002.s479
    [19]
    HAGHIGHAT M, ABDEL-MOTTALEB M, and ALHALABI W. Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(9): 1984–1996. doi: 10.1109/TIFS.2016.2569061
    [20]
    TURK M and PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71–86. doi: 10.1162/jocn.1991.3.1.71
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1559) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return