Advanced Search
Volume 44 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
PENG Xiuping, JI Huipu, LIN Hongbin, LIU Gang. Study on the Constructions of Balanced Optimal Binary Sequences with Period 4v (almost)[J]. Journal of Electronics & Information Technology, 2022, 44(1): 271-278. doi: 10.11999/JEIT200829
Citation: PENG Xiuping, JI Huipu, LIN Hongbin, LIU Gang. Study on the Constructions of Balanced Optimal Binary Sequences with Period 4v (almost)[J]. Journal of Electronics & Information Technology, 2022, 44(1): 271-278. doi: 10.11999/JEIT200829

Study on the Constructions of Balanced Optimal Binary Sequences with Period 4v (almost)

doi: 10.11999/JEIT200829
Funds:  The National Key Research and Development Project (2017YFB0306402), The Natural Foundation of Hebei Province(F2021203040, E2020203188), Science and Technology Program of Universities and Colleges in Hebei Province (BJ2018018, ZD2019039, QN2019133), The Research on Self-Adaptive Control Technology of Elastic Network Service (6142104190109)
  • Received Date: 2020-09-23
  • Rev Recd Date: 2021-04-15
  • Available Online: 2021-07-13
  • Publish Date: 2022-01-10
  • Sequences with optimal autocorrelation property have important roles in wireless communication, radar and cryptography. Therefore, in order to expand more ideal sequences that can be applied to communication systems, based on cyclotomy of order 2 and Chinese remainder theorem, three new constructions of balanced or almost balanced binary sequences of period $T = 4v$(v is odd prime) are presented in this paper. The periodic autocorrelation function of the constructed sequence satisfies: when $v \equiv 3{\text{ }}\left( {{\rm{mod}} 4} \right)$, the out-of-phase autocorrelation value set of the sequence is $\left\{ {0, - 4} \right\}$ or $\left\{ {0, 4, - 4} \right\}$; when $v \equiv 1{\text{ }}\left( {{\rm{mod}} 4} \right)$, the corresponding value set is $\left\{ {0, 4, - 4} \right\}$. The existing range of balanced optimal binary sequences with period of 4v is extended by this method, so that more optimal sequences with good property can be provided for engineering applications.
  • loading
  • [1]
    GOLOMB S W and GONG G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Rader[M]. Cambridge: Cambridge University Press, 2005: 105–110.
    [2]
    LUKE H D, SCHOTTEN H D, and HADINEJAD–MAHRAM H. Binary and quadriphase sequences with optimal autocorrelation properties: A survey[J]. IEEE Transactions on Information Theory, 2003, 49(12): 3271–3282. doi: 10.1109/TIT.2003.820035
    [3]
    彭秀平, 冀惠璞, 郑德亮, 等. 周期为2q理想几乎四进制序列构造研究[J]. 通信学报, 2019, 40(12): 105–113. doi: 10.11959/j.issn.1000−436x.2019225

    PENG Xiuping, JI Huipu, ZHENG Deliang, et al. Study on the constructions of optimal almost quaternary sequences with period 2q[J]. Journal on Communications, 2019, 40(12): 105–113. doi: 10.11959/j.issn.1000−436x.2019225
    [4]
    刘涛, 许成谦, 李玉博. 一类相互正交的最佳二元零相关区序列集构造法[J]. 电子与信息学报, 2017, 39(10): 2442–2448. doi: 10.11999/JEIT161365

    LIU Tao, XU Chengqian, and LI Yubo. Construction of optimal mutually orthogonal sets of binary zero correlation zone sequences[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2442–2448. doi: 10.11999/JEIT161365
    [5]
    李玉博, 刘涛, 陈晓玉. 几乎最优二元多子集零相关区序列集构造法[J]. 电子与信息学报, 2018, 40(3): 705–712. doi: 10.11999/JEIT170603

    LI Yubo, LIU Tao, and CHEN Xiaoyu. Construction of almost optimal binary mutiple zero correlation zone sequence sets[J]. Journal of Electronics &Information Technology, 2018, 40(3): 705–712. doi: 10.11999/JEIT170603
    [6]
    李玉博, 陈邈. 几乎完备高斯整数序列构造法[J]. 电子与信息学报, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844

    LI Yubo and CHEN Miao. Construction of nearly perfect gaussian integer sequences[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844
    [7]
    YAN Tongjiang, CHEN Zhixiong, and LI Bao. A general construction of binary interleaved sequences of period 4N with optimal autocorrelation[J]. Information Sciences, 2014, 287: 26–31. doi: 10.1016/j.ins.2014.07.026
    [8]
    LEMPEL A, COHN M, and EASTMAN W. A class of balanced binary sequences with optimal autocorrelation properties[J]. IEEE Transactions on Information Theory, 1977, 23(1): 38–42. doi: 10.1109/TIT.1977.1055672
    [9]
    NO J S, CHUNG H, SONG H Y, et al. New construction for binary sequences of period ${p^m} - 1$ with optimal autocorrelation using ${\left({z + 1} \right)^d} + {z^d} + b$ [J]. IEEE Transactions on Information Theory, 2001, 47(4): 1638–1644. doi: 10.1109/18.923752
    [10]
    TANG Xiaohu and DING Cunsheng. New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6398–6405. doi: 10.1109/TIT.2010.2081170
    [11]
    TANG Xiaohu and GONG Guang. New constructions of binary sequences with optimal autocorrelation value/magnitude[J]. IEEE Transactions on Information Theory, 2010, 56(3): 1278–1286. doi: 10.1109/TIT.2009.2039159
    [12]
    NAM Y Y and GONG Guang. New binary sequences with optimal autocorrelation magnitude[J]. IEEE Transactions on Information Theory, 2008, 54(10): 4771–4779. doi: 10.1109/TIT.2008.928999
    [13]
    KRENGEL E I and IVANOV P V. Two constructions of binary sequences with optimal autocorrelation magnitude[J]. Electronics Letters, 2016, 52(17): 1457–1459. doi: 10.1049/el.2016.2476
    [14]
    SU Wei, YANG Yang, and FAN Cuiling. New optimal binary sequences with period 4p via interleaving Ding–Helleseth–Lam sequences[J]. Designs, Codes and Cryptography, 2018, 86(6): 1329–1338. doi: 10.1007/s10623-017-0398-5
    [15]
    ZHANG Yuan, LEI Jianguo, and ZHANG Shaopu. A new family of almost difference sets and some necessary conditions[J]. IEEE Transactions on Information Theory, 2006, 52(5): 2052–2061. doi: 10.1109/TIT.2006.872969
    [16]
    ARASU K T, DING C, HELLESETH T, et al. Almost difference sets and their sequences with optimal autocorrelation[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2934–2943. doi: 10.1109/18.959271
    [17]
    DING C, PEI D, and SALOMAA A. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptograph[M]. Singapore: World Scientific, 1996: 82–85.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (946) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return