Citation: | LEI Dajiang, DU Jiahao, ZHANG Liping, LI Weisheng. Multi-stream Architecture and Multi-scale Convolutional Neural Network for Remote Sensing Image Fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 237-244. doi: 10.11999/JEIT200792 |
[1] |
THOMAS C, RANCHIN T, WALD L, et al. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1301–1312. doi: 10.1109/TGRS.2007.912448
|
[2] |
CHOI M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter[J]. IEEE Transactions on Geoscience and Remote sensing, 2006, 44(6): 1672–1682. doi: 10.1109/TGRS.2006.869923
|
[3] |
纪峰, 李泽仁, 常霞, 等. 基于PCA和NSCT变换的遥感图像融合方法[J]. 图学学报, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247
JI Feng, LI Zeren, CHANG Xia, et al. Remote sensing image fusion method based on PCA and NSCT transform[J]. Journal of Graphics, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247
|
[4] |
刘静, 李小超, 祝开建, 等. 基于分布式压缩感知的遥感图像融合算法[J]. 电子与信息学报, 2017, 39(10): 2374–2381. doi: 10.11999/JEIT161393
LIU Jing, LI Xiaochao, ZHU Kaijian, et al. Distributed compressed sensing based remote sensing image fusion algorithm[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2374–2381. doi: 10.11999/JEIT161393
|
[5] |
GARZELLI A, NENCINI F, and CAPOBIANCO L. Optimal MMSE Pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 228–236. doi: 10.1109/TGRS.2007.907604
|
[6] |
贺康建, 金鑫, 聂仁灿, 等. 基于简化脉冲耦合神经网络与拉普拉斯金字塔分解的彩色图像融合[J]. 计算机应用, 2016, 36(S1): 133–137.
HE Kangjian, JIN Xin, NIE Rencan, et al. Color image fusion based on simplified PCNN and Laplace pyramid decomposition[J]. Journal of Computer Applications, 2016, 36(S1): 133–137.
|
[7] |
AIAZZI B, ALPARONE L, BARONTI S, et al. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2300–2312. doi: 10.1109/TGRS.2002.803623
|
[8] |
WANG Xianghai, SHEN Yutong, ZHOU Zhiguang, et al. An image fusion algorithm based on lifting wavelet transform[J]. Journal of Optics, 2015, 17(5): 055702. doi: 10.1088/2040-8978/17/5/055702
|
[9] |
ZHOU J, CIVCO D L, and SILANDER J A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data[J]. International Journal of Remote Sensing, 1998, 19(4): 743–757. doi: 10.1080/014311698215973
|
[10] |
AIAZZI B, ALPARONE L, BARONTI S, et al. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(5): 591–596. doi: 10.14358/PERS.72.5.591
|
[11] |
CHEN Chen, LI Yeping, LIU Wei, et al. Image fusion with local spectral consistency and dynamic gradient sparsity[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2760–2765.
|
[12] |
LIU Yu, CHEN Xun, WANG Zengfu, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42: 158–173. doi: 10.1016/j.inffus.2017.10.007
|
[13] |
YANG Junfeng, FU Xueyang, HU Yuwen, et al. PanNet: A deep network architecture for pan-sharpening[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1753–1761.
|
[14] |
SCARPA G, VITALE S, COZZOLINO D. Target-adaptive CNN-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5443–5457. doi: 10.1109/TGRS.2018.2817393
|
[15] |
XIANG Zhikang, XIAO Liang, LIU Pengfei, et al. A multi-scale densely deep learning method for pansharpening[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2786–2789.
|
[16] |
LIU Xiangyu, WANG Yunhong, and LIU Qingjie. Psgan: A generative adversarial network for remote sensing image Pan-sharpening[C]. The 25th IEEE International Conference on Image Processing, Athens, Greece, 2018: 873–877. doi: 10.1109/ICIP.2018.8451049.
|
[17] |
雷大江, 张策, 李智星, 等. 基于多流融合生成对抗网络的遥感图像融合方法[J]. 电子与信息学报, 2020, 42(8): 1942–1949. doi: 10.11999/JEIT190273
LEI Dajiang, ZHANG Ce, LI Zhixing, et al. Remote sensing image fusion based on generative adversarial network with multi-stream fusion architecture[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1942–1949. doi: 10.11999/JEIT190273
|
[18] |
RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[19] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Identity mappings in deep residual networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 630–645.
|
[20] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700–4708.
|
[21] |
DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281
|
[22] |
ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]. 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2472–2481. doi: 10.1109/CVPR.2018.00262.
|
[23] |
WALD L, RANCHIN T, and MANGOLINI M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(6): 691–699.
|
[24] |
VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2565–2586. doi: 10.1109/TGRS.2014.2361734
|
[25] |
WALD L. Data Fusion: Definitions and Architectures—Fusion of Images of Different Spatial Resolutions[M]. Pairs, France: Les Presses de l’ Écoledes Mines, 2002: 165–189.
|
[26] |
GARZELLI A and NENCINI F. Hypercomplex quality assessment of multi/hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 662–665. doi: 10.1109/LGRS.2009.2022650
|
[27] |
张新曼, 韩九强. 基于视觉特性的多尺度对比度塔图像融合及性能评价[J]. 西安交通大学学报, 2004, 38(4): 380–383. doi: 10.3321/j.issn:0253-987X.2004.04.013
ZHANG Xinman and HAN Jiuqiang. Image fusion of multiscale contrast pyramid-Based vision feature and its performance evaluation[J]. Journal of Xi’an Jiaotong University, 2004, 38(4): 380–383. doi: 10.3321/j.issn:0253-987X.2004.04.013
|
[28] |
ALPARONE L, AIAZZI B, BARONTI S, et al. Multispectral and panchromatic data fusion assessment without reference[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(2): 193–200. doi: 10.14358/PERS.74.2.193
|