Citation: | LI Shuzhi, YU Letao, DENG Xiaohong. Recommendation Model Combining Deep Sentiment Analysis and Scoring Matrix[J]. Journal of Electronics & Information Technology, 2022, 44(1): 245-253. doi: 10.11999/JEIT200779 |
[1] |
BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46: 109–132. doi: 10.1016/j.knosys.2013.03.012
|
[2] |
黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619–1647. doi: 10.11897/SP.J.1016.2018.01619
HUANG Liwei, JIANG Bitao, LÜ Shouye, et al. Survey on deep based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619–1647. doi: 10.11897/SP.J.1016.2018.01619
|
[3] |
KOREN Y, BELL R, and VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30–37. doi: 10.1109/MC.2009.263
|
[4] |
张光卫, 李德毅, 李鹏, 等. 基于云模型的协同过滤推荐算法[J]. 软件学报, 2007, 18(10): 2403–2411. doi: 10.1360/jos182403
ZHANG Guangwei, LI Deyi, LI Peng, et al. A collaborative filtering recommendation algorithm based on cloud model[J]. Journal of Software, 2007, 18(10): 2403–2411. doi: 10.1360/jos182403
|
[5] |
SUNDERMANN C V, DOMINGUES M A, SINOARA R A, et al. Using opinion mining in context-aware recommender systems: A systematic review[J]. Information, 2019, 10(2): 42. doi: 10.3390/info10020042
|
[6] |
CHEN Li, CHEN Guanliang, and WANG Feng. Recommender systems based on user reviews: The state of the art[J]. User Modeling And User-adapted Interaction, 2015, 25(2): 99–154. doi: 10.1007/s11257-015-9155-5
|
[7] |
MCAULEY J and LESKOVEC J. Hidden factors and hidden topics: Understanding rating dimensions with review text[C]. The 7th ACM Conference on Recommender Systems, Hong Kong, China, 2013: 165–172. doi: 10.1145/2507157.2507163.
|
[8] |
REN Zhaochun, LIANG Shangsong, LI Piji, et al. Social collaborative viewpoint regression with explainable recommendations[C]. The Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 2017: 485–494. doi: 10.1145/3018661.3018686.
|
[9] |
ZHENG Lei, NOROOZI V, and YU P S. Joint deep modeling of users and items using reviews for recommendation[C]. The Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 2017: 425–434. doi: 10.1145/3018661.3018665.
|
[10] |
LI Piji, WANG Zihao, REN Zhaochun, et al. Neural rating regression with abstractive tips generation for recommendation[C]. The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Janpan, 2017: 345–354. doi: 10.1145/3077136.3080822.
|
[11] |
SEO S, HUANG Jing, YANG Hao, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]. The Eleventh ACM Conference on Recommender Systems, Como, Italy, 2017: 297–305. doi: 10.1145/3109859.3109890.
|
[12] |
CHEN Chong, ZHANG Min, LIU Yiqun, et al. Neural attentional rating regression with review-level explanations[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 1583–1592. doi: 10.1145/3178876.3186070.
|
[13] |
CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-decoder approaches[EB/OL]. https://arxiv.org/abs/1409.1259, 2014.
|
[14] |
CLARK K, LUONG M T, LE Q V, et al. ELECTRA: Pre-training text encoders as discriminators rather than generators[C]. International Conference on Learning Representations 2020, Addis Ababa, Ethiopia, 2020: 1–13.
|
[15] |
赵衎衎, 张良富, 张静, 等. 因子分解机模型研究综述[J]. 软件学报, 2019, 30(3): 799–821. doi: 10.13328/j.cnki.jos.005698
ZHAO Kankan, ZHANG Liangfu, ZHANG Jing, et al. Survey on factorization machines model[J]. Journal of Software, 2019, 30(3): 799–821. doi: 10.13328/j.cnki.jos.005698
|
[16] |
李琳, 朱阁, 解庆, 等. 一种潜在特征同步学习和偏好引导的推荐方法[J]. 软件学报, 2019, 30(11): 3382–3396. doi: 10.13328/j.cnki.jos.005542
LI Lin, ZHU Ge, XIE Qing, et al. Recommendation approach by simultaneous learning latent features and preferences guidance[J]. Journal of Software, 2019, 30(11): 3382–3396. doi: 10.13328/j.cnki.jos.005542
|
[17] |
KIM D, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation[C]. The 10th ACM Conference on Recommender Systems, Boston, USA, 2016: 233–240. doi: 10.1145/2959100.2959165.
|