Advanced Search
Volume 44 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LI Shuzhi, YU Letao, DENG Xiaohong. Recommendation Model Combining Deep Sentiment Analysis and Scoring Matrix[J]. Journal of Electronics & Information Technology, 2022, 44(1): 245-253. doi: 10.11999/JEIT200779
Citation: LI Shuzhi, YU Letao, DENG Xiaohong. Recommendation Model Combining Deep Sentiment Analysis and Scoring Matrix[J]. Journal of Electronics & Information Technology, 2022, 44(1): 245-253. doi: 10.11999/JEIT200779

Recommendation Model Combining Deep Sentiment Analysis and Scoring Matrix

doi: 10.11999/JEIT200779
Funds:  The National Natural Science Foundation of China (61762046), The Science and Technology Research Project of Education Department of Jiangxi Province (GJJ181505)
  • Received Date: 2020-09-02
  • Rev Recd Date: 2021-04-09
  • Available Online: 2021-07-13
  • Publish Date: 2022-01-10
  • Most recommendation systems have a data sparsity problem, which limits the validity of the model that they use. However, the user’s comments on a commodity contain a lot of information. Emotional analysis of the comment text and the extraction of key factors for model learning can effectively alleviate the data sparsity problem, but only the use of comment data and ignore the main factors of the scoring data will affect the recommendation accuracy. To improve further the precision of recommendations, a deep model for the processing of Review Texts and Rating Matrices (RTRM) is proposed. The model extracts deep-level features and combines them to make rating predictions. Then, by using the pre-trained Electra model, the implicit expression of each comment is get, and combining with the deep emotion analysis and attention mechanism, the analysis of the comment text is realized from the context semantic level. It solves the problem that it is difficult to analyze the semantics of short text; User (item) reviews interact with a rating matrix to predict the user’s rating of a product in the fusion layer module. Finally, the Mean Square Error (MSE) is used to perform performance comparison experiments on 6 sets of data sets. Experimental results show that the performance of the proposed model outperforms significantly other systems on a variety of datasets, and the average prediction error is reduced by a maximum of 12.821%, the model is suitable for recommending accurate items to users.
  • loading
  • [1]
    BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46: 109–132. doi: 10.1016/j.knosys.2013.03.012
    [2]
    黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619–1647. doi: 10.11897/SP.J.1016.2018.01619

    HUANG Liwei, JIANG Bitao, LÜ Shouye, et al. Survey on deep based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619–1647. doi: 10.11897/SP.J.1016.2018.01619
    [3]
    KOREN Y, BELL R, and VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30–37. doi: 10.1109/MC.2009.263
    [4]
    张光卫, 李德毅, 李鹏, 等. 基于云模型的协同过滤推荐算法[J]. 软件学报, 2007, 18(10): 2403–2411. doi: 10.1360/jos182403

    ZHANG Guangwei, LI Deyi, LI Peng, et al. A collaborative filtering recommendation algorithm based on cloud model[J]. Journal of Software, 2007, 18(10): 2403–2411. doi: 10.1360/jos182403
    [5]
    SUNDERMANN C V, DOMINGUES M A, SINOARA R A, et al. Using opinion mining in context-aware recommender systems: A systematic review[J]. Information, 2019, 10(2): 42. doi: 10.3390/info10020042
    [6]
    CHEN Li, CHEN Guanliang, and WANG Feng. Recommender systems based on user reviews: The state of the art[J]. User Modeling And User-adapted Interaction, 2015, 25(2): 99–154. doi: 10.1007/s11257-015-9155-5
    [7]
    MCAULEY J and LESKOVEC J. Hidden factors and hidden topics: Understanding rating dimensions with review text[C]. The 7th ACM Conference on Recommender Systems, Hong Kong, China, 2013: 165–172. doi: 10.1145/2507157.2507163.
    [8]
    REN Zhaochun, LIANG Shangsong, LI Piji, et al. Social collaborative viewpoint regression with explainable recommendations[C]. The Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 2017: 485–494. doi: 10.1145/3018661.3018686.
    [9]
    ZHENG Lei, NOROOZI V, and YU P S. Joint deep modeling of users and items using reviews for recommendation[C]. The Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 2017: 425–434. doi: 10.1145/3018661.3018665.
    [10]
    LI Piji, WANG Zihao, REN Zhaochun, et al. Neural rating regression with abstractive tips generation for recommendation[C]. The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Janpan, 2017: 345–354. doi: 10.1145/3077136.3080822.
    [11]
    SEO S, HUANG Jing, YANG Hao, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]. The Eleventh ACM Conference on Recommender Systems, Como, Italy, 2017: 297–305. doi: 10.1145/3109859.3109890.
    [12]
    CHEN Chong, ZHANG Min, LIU Yiqun, et al. Neural attentional rating regression with review-level explanations[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 1583–1592. doi: 10.1145/3178876.3186070.
    [13]
    CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-decoder approaches[EB/OL]. https://arxiv.org/abs/1409.1259, 2014.
    [14]
    CLARK K, LUONG M T, LE Q V, et al. ELECTRA: Pre-training text encoders as discriminators rather than generators[C]. International Conference on Learning Representations 2020, Addis Ababa, Ethiopia, 2020: 1–13.
    [15]
    赵衎衎, 张良富, 张静, 等. 因子分解机模型研究综述[J]. 软件学报, 2019, 30(3): 799–821. doi: 10.13328/j.cnki.jos.005698

    ZHAO Kankan, ZHANG Liangfu, ZHANG Jing, et al. Survey on factorization machines model[J]. Journal of Software, 2019, 30(3): 799–821. doi: 10.13328/j.cnki.jos.005698
    [16]
    李琳, 朱阁, 解庆, 等. 一种潜在特征同步学习和偏好引导的推荐方法[J]. 软件学报, 2019, 30(11): 3382–3396. doi: 10.13328/j.cnki.jos.005542

    LI Lin, ZHU Ge, XIE Qing, et al. Recommendation approach by simultaneous learning latent features and preferences guidance[J]. Journal of Software, 2019, 30(11): 3382–3396. doi: 10.13328/j.cnki.jos.005542
    [17]
    KIM D, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation[C]. The 10th ACM Conference on Recommender Systems, Boston, USA, 2016: 233–240. doi: 10.1145/2959100.2959165.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (1163) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return