Citation: | Shuying YANG, Binbin GUI, Shengyong CHEN. Arrhythmia Detection Based on Wavelet Decomposition and 1D-GoogLeNet[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3018-3027. doi: 10.11999/JEIT200774 |
[1] |
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209–220. doi: 10.3969/j.issn.1000-3614.2019.03.001
HU Shengshou, GAO Runlin, LIU Lisheng, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chinese Circulation Journal, 2019, 34(3): 209–220. doi: 10.3969/j.issn.1000-3614.2019.03.001
|
[2] |
HUANG Jingshan, CHEN Binqing, ZENG Nianyin, et al. Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks[J]. Journal of Ambient Intelligence and Humanized Computing, To be published. doi: 10.1007/s12652-020-02110-y
|
[3] |
RANGAYYAN R M. Biomedical Signal Analysis: A Case Study Approach[M]. New York: IEEE Press, 2002.
|
[4] |
VELAYUDHAN A and PETER S. Noise analysis and different denoising techniques of ECG signal - a survey[J]. IOSR Journal of Electronics and Communication Engineering, 2016, 1(1): 40–44.
|
[5] |
SLONIM T Y M, SLONIM M A, and OVSYSCHER E A. The use of simple FIR filters for filtering of ECG signals and a new method for post-filter signal reconstruction[C]. Computers in Cardiology Conference, London, UK, 1993: 871–873. doi: 10.1109/CIC.1993.378347.
|
[6] |
THAKOR N V and ZHU Y S. Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection[J]. IEEE Transactions on Biomedical Engineering, 1991, 38(8): 785–794. doi: 10.1109/10.83591
|
[7] |
KABIR M A and SHAHNAZ C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains[J]. Biomedical Signal Processing and Control, 2012, 7(5): 481–489. doi: 10.1016/j.bspc.2011.11.003
|
[8] |
WANG Ze, WAN Feng, WONG C M, et al. Adaptive Fourier decomposition based ECG denoising[J]. Computers in Biology and Medicine, 2016, 77: 195–205. doi: 10.1016/j.compbiomed.2016.08.013
|
[9] |
WANG Ge, YANG Lin, LIU Ming, et al. ECG signal denoising based on deep factor analysis[J]. Biomedical Signal Processing and Control, 2020, 57: 101824. doi: 10.1016/j.bspc.2019.101824
|
[10] |
YÜCELBAŞ Ş, YÜCELBAŞ C, TEZEL G, et al. Pre-determination of OSA degree using morphological features of the ECG signal[J]. Expert Systems with Applications, 2017, 81: 79–87. doi: 10.1016/j.eswa.2017.03.049
|
[11] |
INAN O T, GIOVANGRANDI L, and KOVACS G T A. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2507–2515. doi: 10.1109/TBME.2006.880879
|
[12] |
LINH T H, OSOWSKI S, and STODOLSKI M. On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network[C]. The 19th IEEE Instrumentation and Measurement Technology Conference, Anchorage, USA, 2002: 165–170. doi: 10.1109/IMTC.2002.1006834.
|
[13] |
MARTIS R J, ACHARYA U R, and MIN L C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform[J]. Biomedical Signal Processing and Control, 2013, 8(5): 437–448. doi: 10.1016/j.bspc.2013.01.005
|
[14] |
ALQURAN H, ALQUDAH A M, ABU-QASMIEH I, et al. ECG classification using higher order spectral estimation and deep learning techniques[J]. Neural Network World, 2019, 29: 207–219. doi: 10.14311/NNW.2019.29.014
|
[15] |
LYON A, MINCHOLÉ A, MARTÍNEZ J P, et al. Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances[J]. Journal of the Royal Society Interface, 2018, 15(138): 20170821. doi: 10.1098/rsif.2017.0821
|
[16] |
LLAMEDO M and MARTÍNEZ J P. Heartbeat classification using feature selection driven by database generalization criteria[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(3): 616–625. doi: 10.1109/TBME.2010.2068048
|
[17] |
NASIRI J A, NAGHIBZADEH M, YAZDI H S, et al. ECG arrhythmia classification with support vector machines and genetic algorithm[C]. The 3rd UKSim European Symposium on Computer Modeling and Simulation, Athens, Greece, 2009: 187–192. doi: 10.1109/EMS.2009.39.
|
[18] |
CASAS M M, AVITIA R L, GONZALEZ-NAVARRO F F, et al. Bayesian classification models for premature ventricular contraction detection on ECG traces[J]. Journal of Healthcare Engineering, 2018, 2018: 2694768. doi: 10.1155/2018/2694768
|
[19] |
KUMAR G R and KUMARASWAMY D Y S. Investigating cardiac arrhythmia in ECG using random forest classification[J]. International Journal of Computer Applications, 2012, 37(4): 31–34. doi: 10.5120/4599-6557
|
[20] |
RAJPURKAR P, HANNUN A Y, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[EB/OL]. https://arxiv.org/abs/1707.01836,2017.
|
[21] |
MOSTAYED A, LUO Junye, SHU Xingliang, et al. Classification of 12-lead ECG signals with Bi-directional LSTM network[EB/OL]. https://arxiv.org/abs/1811.02090,2018.
|
[22] |
SINGH S, PANDEY S K, PAWAR U, et al. Classification of ECG arrhythmia using recurrent neural networks[J]. Procedia Computer Science, 2018, 132: 1290–1297. doi: 10.1016/j.procs.2018.05.045
|
[23] |
MOODY G B and MARK R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45–50. doi: 10.1109/51.932724
|
[24] |
GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215–e220. doi: 10.1161/01.cir.101.23.e215
|
[25] |
MAHMOODABADI S Z, AHMADIAN A, and ABOLHASANI M D. ECG feature extraction using Daubechies wavelets[C]. Visualization, Imaging, and Image Processing, Benidorm, Spain, 2005.
|
[26] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
|
[27] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
|
[28] |
IOFFE S and SZEGEDY C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
|
[29] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
|
[30] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.
|
[31] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations (ICLR), San Diego, USA, 2015.
|