Citation: | Jinguang SUN, Tao LI, xiangjun DONG. Object Contour Partition Model with Consistent Properties[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2985-2992. doi: 10.11999/JEIT200741 |
[1] |
SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
|
[2] |
LIU Nian and HAN Junwei. DHSnet: Deep hierarchical saliency network for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 678–686. doi: 10.1109/CVPR.2016.80.
|
[3] |
LI Guanbin and YU Yizhou. Deep contrast learning for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 478–487. doi: 10.1109/CVPR.2016.58.
|
[4] |
XIE Saining and TU Zhuowen. Holistically-nested edge detection[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1395–1403. doi: 10.1109/ICCV.2015.164.
|
[5] |
ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6230–6239. doi: 10.1109/cvpr.2017.660.
|
[6] |
BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
|
[7] |
余春艳, 徐小丹, 钟诗俊. 融合去卷积与跳跃嵌套结构的显著性区域检测[J]. 计算机辅助设计与图形学学报, 2018, 30(11): 2150–2158.
YU Chunyan, XU Xiaodan, and ZHONG Shijun. Saliency region detection based on deconvolutional and skip nested module[J]. Journal of Computer-Aided Design &Computer Graphics, 2018, 30(11): 2150–2158.
|
[8] |
张冬明, 靳国庆, 代锋, 等. 基于深度融合的显著性目标检测算法[J]. 计算机学报, 2019, 42(9): 2076–2086. doi: 10.11897/SP.J.1016.2019.02076
ZHANG Dongming, JIN Guoqing, DAI Feng, et al. Salient object detection based on deep fusion of hand-crafted features[J]. Chinese Journal of Computers, 2019, 42(9): 2076–2086. doi: 10.11897/SP.J.1016.2019.02076
|
[9] |
HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 815–828. doi: 10.1109/TPAMI.2018.2815688
|
[10] |
纪超, 黄新波, 曹雯, 等. 结合深度学习和全局-局部特征的图像显著区域计算[J]. 计算机辅助设计与图形学学报, 2019, 31(10): 1838–1846. doi: 10.3724/SP.J.1089.2019.17544
JI Chao, HUANG Xinbo, CAO Wen, et al. Fusion of deep learning and global-local features of the image salient region calculation[J]. Journal of Computer-Aided Design &Computer Graphics, 2019, 31(10): 1838–1846. doi: 10.3724/SP.J.1089.2019.17544
|
[11] |
WU Huikai, ZHANG Junge, HUANG Kaiqi, et al. FastFCN: Rethinking dilated convolution in the backbone for semantic segmentation[J]. arXiv: 1903.11816, 2019.
|
[12] |
郭辉, 芮兰兰, 高志鹏. 车辆边缘网络中基于多参数MDP模型的动态服务迁移策略[J]. 通信学报, 2020, 41(1): 1–14. doi: 10.11959/j.issn.1000-436x.2020012
GUO Hui, RUI Lanlan, and GAO Zhipeng. Dynamic service migration strategy based on MDP model with multiple parameter in vehicular edge network[J]. Journal on Communications, 2020, 41(1): 1–14. doi: 10.11959/j.issn.1000-436x.2020012
|
[13] |
范九伦, 雷博. 倒数粗糙熵图像阈值化分割算法[J]. 电子与信息学报, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559
FAN Jiulun and LEI Bo. Image thresholding segmentation method based on reciprocal rough entropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559
|
[14] |
廖苗, 李阳, 赵于前, 等. 一种新的图像超像素分割方法[J]. 电子与信息学报, 2020, 42(2): 364–370. doi: 10.11999/JEIT190111
LIAO Miao, LI Yang, ZHAO Yuqian, et al. A new method for image superpixel segmentation[J]. Journal of Electronics &Information Technology, 2020, 42(2): 364–370. doi: 10.11999/JEIT190111
|
[15] |
LI He, LI Gang, WANG Xuehu, et al. Edge detection of heterogeneity in transmission images based on frame accumulation and multiband information fusion[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 204: 104117. doi: 10.1016/j.chemolab.2020.104117
|
[16] |
刘健庄, 栗文青. 灰度图象的二维Otsu自动阈值分割法[J]. 自动化学报, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015
LIU Jianzhuang and LI Wenqing. The automatic thresholding of gray-level pictures via two-dimensional Otsu method[J]. Acta Automatica Sinica, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015
|