Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Jinguang SUN, Tao LI, xiangjun DONG. Object Contour Partition Model with Consistent Properties[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2985-2992. doi: 10.11999/JEIT200741
Citation: Jinguang SUN, Tao LI, xiangjun DONG. Object Contour Partition Model with Consistent Properties[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2985-2992. doi: 10.11999/JEIT200741

Object Contour Partition Model with Consistent Properties

doi: 10.11999/JEIT200741
Funds:  The National Natural Science Foundation of China(61702241, 61602226),The National Key R&D Program of China (2018YFB1402902, 2018YFB1403303)
  • Received Date: 2020-08-24
  • Rev Recd Date: 2021-03-15
  • Available Online: 2021-03-25
  • Publish Date: 2021-10-18
  • A new object contour partition model based on the fully convolutional network, combined with the idea of generative counter network and consistent attributes is proposed. Firstly, the image region partition network is used as a generator to divide the image region. Then the structural similarity is used as the reconstruction loss of regional division to supervise and guide model learning from the perspective of visual system. Finally, the global and local context discrimination networks are used as double-path similarity to supervise the reconstruction loss of regional division and guide model learning from the discriminators to distinguish the truth and falsity of the results of regional division, and a joint loss is proposed to train the supervision model in combination with the adversarial loss, so as to make the content of regional division true, natural and with attribute consistency. The instantaneity and effectiveness of the method are verified by living examples.
  • loading
  • [1]
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    [2]
    LIU Nian and HAN Junwei. DHSnet: Deep hierarchical saliency network for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 678–686. doi: 10.1109/CVPR.2016.80.
    [3]
    LI Guanbin and YU Yizhou. Deep contrast learning for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 478–487. doi: 10.1109/CVPR.2016.58.
    [4]
    XIE Saining and TU Zhuowen. Holistically-nested edge detection[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1395–1403. doi: 10.1109/ICCV.2015.164.
    [5]
    ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6230–6239. doi: 10.1109/cvpr.2017.660.
    [6]
    BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
    [7]
    余春艳, 徐小丹, 钟诗俊. 融合去卷积与跳跃嵌套结构的显著性区域检测[J]. 计算机辅助设计与图形学学报, 2018, 30(11): 2150–2158.

    YU Chunyan, XU Xiaodan, and ZHONG Shijun. Saliency region detection based on deconvolutional and skip nested module[J]. Journal of Computer-Aided Design &Computer Graphics, 2018, 30(11): 2150–2158.
    [8]
    张冬明, 靳国庆, 代锋, 等. 基于深度融合的显著性目标检测算法[J]. 计算机学报, 2019, 42(9): 2076–2086. doi: 10.11897/SP.J.1016.2019.02076

    ZHANG Dongming, JIN Guoqing, DAI Feng, et al. Salient object detection based on deep fusion of hand-crafted features[J]. Chinese Journal of Computers, 2019, 42(9): 2076–2086. doi: 10.11897/SP.J.1016.2019.02076
    [9]
    HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 815–828. doi: 10.1109/TPAMI.2018.2815688
    [10]
    纪超, 黄新波, 曹雯, 等. 结合深度学习和全局-局部特征的图像显著区域计算[J]. 计算机辅助设计与图形学学报, 2019, 31(10): 1838–1846. doi: 10.3724/SP.J.1089.2019.17544

    JI Chao, HUANG Xinbo, CAO Wen, et al. Fusion of deep learning and global-local features of the image salient region calculation[J]. Journal of Computer-Aided Design &Computer Graphics, 2019, 31(10): 1838–1846. doi: 10.3724/SP.J.1089.2019.17544
    [11]
    WU Huikai, ZHANG Junge, HUANG Kaiqi, et al. FastFCN: Rethinking dilated convolution in the backbone for semantic segmentation[J]. arXiv: 1903.11816, 2019.
    [12]
    郭辉, 芮兰兰, 高志鹏. 车辆边缘网络中基于多参数MDP模型的动态服务迁移策略[J]. 通信学报, 2020, 41(1): 1–14. doi: 10.11959/j.issn.1000-436x.2020012

    GUO Hui, RUI Lanlan, and GAO Zhipeng. Dynamic service migration strategy based on MDP model with multiple parameter in vehicular edge network[J]. Journal on Communications, 2020, 41(1): 1–14. doi: 10.11959/j.issn.1000-436x.2020012
    [13]
    范九伦, 雷博. 倒数粗糙熵图像阈值化分割算法[J]. 电子与信息学报, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559

    FAN Jiulun and LEI Bo. Image thresholding segmentation method based on reciprocal rough entropy[J]. Journal of Electronics &Information Technology, 2020, 42(1): 214–221. doi: 10.11999/JEIT190559
    [14]
    廖苗, 李阳, 赵于前, 等. 一种新的图像超像素分割方法[J]. 电子与信息学报, 2020, 42(2): 364–370. doi: 10.11999/JEIT190111

    LIAO Miao, LI Yang, ZHAO Yuqian, et al. A new method for image superpixel segmentation[J]. Journal of Electronics &Information Technology, 2020, 42(2): 364–370. doi: 10.11999/JEIT190111
    [15]
    LI He, LI Gang, WANG Xuehu, et al. Edge detection of heterogeneity in transmission images based on frame accumulation and multiband information fusion[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 204: 104117. doi: 10.1016/j.chemolab.2020.104117
    [16]
    刘健庄, 栗文青. 灰度图象的二维Otsu自动阈值分割法[J]. 自动化学报, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015

    LIU Jianzhuang and LI Wenqing. The automatic thresholding of gray-level pictures via two-dimensional Otsu method[J]. Acta Automatica Sinica, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (550) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return