Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Luwen MENG, Dexin ZHAO, Mingmin ZHANG. Analysis of Wave Field Composition and Characteristics in Shallow Sea[J]. Journal of Electronics & Information Technology, 2021, 43(3): 788-795. doi: 10.11999/JEIT200704
Citation: Luwen MENG, Dexin ZHAO, Mingmin ZHANG. Analysis of Wave Field Composition and Characteristics in Shallow Sea[J]. Journal of Electronics & Information Technology, 2021, 43(3): 788-795. doi: 10.11999/JEIT200704

Analysis of Wave Field Composition and Characteristics in Shallow Sea

doi: 10.11999/JEIT200704
Funds:  The National Natural Science Foundation of China(51809274)
  • Received Date: 2020-08-10
  • Rev Recd Date: 2021-02-05
  • Available Online: 2021-02-22
  • Publish Date: 2021-03-22
  • To better understand and utilize the acoustic field in shallow sea, a theoretical method that can give the full-wave solution is proposed, then the complex integral expression of the acoustic field is given. The complex integral fraction is solved in the complex plane, and the components of the acoustic field in shallow sea are obtained. The high-order staggered grid finite difference method is also used to numerically simulate the acoustic field in shallow sea, showing the wave field structure and spatial energy distribution. Results show that the acoustic field in shallow sea includes discrete spectrum and continuous spectrum; The discrete spectrum includes normal waves and Scholte wave, and the continuous wave includes lateral waves; The amplitudes of normal waves and Scholte wave are inversely proportional to the root of horizontal propagation distance, and the amplitude of lateral wave is inversely proportional to the power of horizontal propagation distance; The shallower the sea water, the lower the frequency and the greater the depth of the sound source, the less energy in the sea water will be. The energy radiated by the acoustic source is mainly propagated in the form of Scholte wave, and the energy is mostly concentrated at the seabed interface.
  • loading
  • KOZACZKA E and GRELOWSKA G. Shipping low frequency noise and its propagation in shallow water[J]. Acta Physica Polonica A, 2011, 119(6A): 1009–1012. doi: 10.12693/APhysPolA.119.1009
    LUNKOV A A and KATSNELSON B G. Using discrete low-frequency components of shipping noise for gassy sediment characterization in shallow water[J]. The Journal of the Acoustical Society of America, 2020, 147(5): EL428–EL433. doi: 10.1121/10.0001277
    DUNCAN A J, GAVRILOV A N, MCCAULEY R D, et al. Characteristics of sound propagation in shallow water over an elastic seabed with a thin cap-rock layer[J]. The Journal of the Acoustical Society of America, 2013, 134(1): 207–215. doi: 10.1121/1.4809723
    TOLLEFSEN D. Thin-sediment shear-induced effects on low-frequency broadband acoustic propagation in a shallow continental sea[J]. The Journal of the Acoustical Society of America, 1998, 104(5): 2718–2726. doi: 10.1121/1.423855
    KOZACZKA E and GRELOWSKA G. Propagation of ship-generated noise in shallow sea[J]. Polish Maritime Research, 2018, 25(2): 37–46. doi: 10.2478/pomr-2018-0052
    朱子尧, 韩树平, 郭正东, 等. 乘性噪声背景下基于非线性渐消滤波的单信标测距定位算法[J]. 电子与信息学报, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239

    ZHU Ziyao, HAN Shuping, GUO Zhengdong, et al. Single beacon location algorithm based on nonlinear fading filter under multiplicative noise background[J]. Journal of Electronics &Information Technology, 2019, 41(1): 165–171. doi: 10.11999/JEIT180239
    AKAL T and BERKSON J M. Ocean Seismo-Acoustics: Low-Frequency Underwater Acoustics[M]. Boston: Springer, 1986: 1–20. doi: 10.1007/978-1-4613-2201-6.
    KATSNELSON B, PETNIKOV V, and LYNCH J. Fundamentals of Shallow Water Acoustics[M]. Boston: Springer, 2012: 1–11. doi: 10.1007/978-1-4419-9777-7.
    莫亚枭. 基于耦合简正波理论的水平变化波导声场建模与特性分析[D]. [博士论文], 哈尔滨工程大学, 2015.

    MO Yaxiao. Acoustic field modeling and analysis based on coupled-mode in range-development waveguide[D]. [Ph. D. dissertation], Harbin Engineering University, 2015.
    SABATINI R and CRISTINI P. A multi-domain collocation method for the accurate computation of normal modes in open oceanic and atmospheric waveguides[J]. Acta Acustica united with Acustica, 2019, 105(3): 464–474. doi: 10.3813/AAA.919328
    KOESSLER M W, DUNCAN A J, GAVRILOV A N. Low-frequency acoustic propagation modelling for Australian range-independent environments[J]. Acoustics Australia, 2017, 45(2): 331–341. doi: 10.1007/s40857-017-0108-5
    王逸林, 马世龙, 邹男, 等. 时空域联合的水下未知线谱目标检测方法[J]. 电子与信息学报, 2019, 41(7): 1682–1689. doi: 10.11999/JEIT180796

    WANG Yilin, MA Shilong, ZOU Nan, et al. Detection of unknown line-spectrum underwater target using space-time processing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1682–1689. doi: 10.11999/JEIT180796
    孟路稳, 罗夏云, 程广利, 等. 海底地震波波动成分及传播特性分析[J]. 上海交通大学学报, 2018, 52(12): 1627–1633. doi: 10.16183/j.cnki.jsjtu.2018.12.012

    MENG Luwen, LUO Xiayun, CHENG Guangli, et al. Components and propagation characteristics of seabed seismic waves[J]. Journal of Shanghai Jiaotong University, 2018, 52(12): 1627–1633. doi: 10.16183/j.cnki.jsjtu.2018.12.012
    罗夏云, 孟路稳, 程广利, 等. 浅海地震波波动成分及传播规律分析[J]. 华中科技大学学报: 自然科学版, 2019, 47(1): 120–126. doi: 10.13245/j.hust.190122

    LUO Xiayun, MENG Luwen, CHENG Guangli, et al. Analysis of wave component and propagation rule of seismic wave in shallow sea[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2019, 47(1): 120–126. doi: 10.13245/j.hust.190122
    LU Zaihua, ZHANG Zhihong, and GU Jiannong. Analysis on the frequency dispersion characteristics of seismic wave caused by low frequency sound source in shallow sea[J]. Ocean Engineering, 2015, 106: 354–359. doi: 10.1016/j.oceaneng.2015.07.019
    LI Li, PIAO Shengchun, ZHANG Haigang, et al. Broadband modeling of sound propagation in shallow water with an irregular elastic bottom[J]. The Journal of the Acoustical Society of America, 2014, 135(4): 2302. doi: 10.1121/1.4877578
    JENSEN F B, KUPERMAN W A, PORTER M B, et al. Computational Ocean Acoustics[M]. New York: Springer, 2011: 457–530. doi: 10.1007/978-1-4419-8678-8.
    O’REILLY O, LUNDQUIST T, DUNHAM E M, et al. Energy stable and high-order-accurate finite difference methods on staggered grids[J]. Journal of Computational Physics, 2017, 346: 572–589. doi: 10.1016/j.jcp.2017.06.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (902) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return