Citation: | Hongyan WANG, Ruonan YU, Mian Pan, Zumin WANG. Off-grid DOA Estimation Method Based on Covariance Matrix Reconstruction[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2863-2870. doi: 10.11999/JEIT200697 |
[1] |
XU Haiyun, WANG Daming, BA Bin, et al. Direction-of-arrival estimation for both uncorrelated and coherent signals in coprime array[J]. IEEE Access, 2019, 7: 18590–18600. doi: 10.1109/ACCESS.2019.2896979
|
[2] |
蒋莹, 王冰切, 韩俊, 等. 基于分布式压缩感知的宽带欠定信号DOA估计[J]. 电子与信息学报, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723
JIANG Ying, WANG Bingqie, HAN Jun, et al. Underdetermined wideband DOA estimation based on distributed compressive sensing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723
|
[3] |
林云, 胡强. 多测量向量模型下的修正MUSIC算法[J]. 电子与信息学报, 2018, 40(11): 2584–2589. doi: 10.11999/JEIT180001
LIN Yun and HU Qiang. Modified MUSIC algorithm for multiple measurement vector models[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2584–2589. doi: 10.11999/JEIT180001
|
[4] |
ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
|
[5] |
SHIKAGAWAI Y and ICHIGE K. High-resolution and low-cost direction-of-arrival estimation by 2q-root-MUSIC method[C]. 2013 IEEE Workshop on Signal Processing Systems (SiPS), Taipei City, China, 2013.
|
[6] |
PESAVENTO M and GERSHMAN A B. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1310–1324. doi: 10.1109/78.928686
|
[7] |
LIU Yuan, LIU Hongwei, XIA Xianggen, et al. Target localization in multipath propagation environment using dictionary-based sparse representation[J]. IEEE Access, 2019, 7: 150583–150597. doi: 10.1109/ACCESS.2019.2947497
|
[8] |
WANG Xianpeng, MENG Dandan, HUANG Mengxing, et al. Reweighted regularized sparse recovery for DOA estimation with unknown mutual coupling[J]. IEEE Communications Letters, 2019, 23(2): 290–293. doi: 10.1109/LCOMM.2018.2884457
|
[9] |
HU Bin, WU Xiaochuan, ZHANG Xin, et al. DOA estimation based on compressed sensing with gain/phase uncertainties[J]. IET Radar, Sonar & Navigation, 2018, 12(11): 1346–1352. doi: 10.1049/iet-rsn.2018.5087
|
[10] |
CUI Wei, SHEN Qing, LIU Wei, et al. Low complexity DOA estimation for wideband off-grid sources based on re-focused compressive sensing with dynamic dictionary[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(5): 918–930. doi: 10.1109/JSTSP.2019.2932973
|
[11] |
MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/TSP.2005.850882
|
[12] |
韦娟, 计永祥, 牛俊儒. 一种新的稀疏重构的DOA估计算法[J]. 西安电子科技大学学报: 自然科学版, 2018, 45(5): 13–18. doi: 10.3969/j.issn.1001-2400.2018.05.003
WEI Juan, JI Yongxiang, and NIU Junru. Novel algorithm for DOA estimation based on the sparse reconstruction[J]. Journal of Xidian University, 2018, 45(5): 13–18. doi: 10.3969/j.issn.1001-2400.2018.05.003
|
[13] |
YANG Jie, YANG Yixin, LIAO Guisheng, et al. A super-resolution direction of arrival estimation algorithm for coprime array via sparse Bayesian learning inference[J]. Circuits, Systems, and Signal Processing, 2018, 37(5): 1907–1934. doi: 10.1007/s00034-017-0637-z
|
[14] |
王洪雁, 于若男. 基于稀疏和低秩恢复的稳健DOA估计方法[J]. 电子与信息学报, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263
WANG Hongyan and YU Ruonan. Sparse and low rank recovery based robust DOA estimation method[J]. Journal of Electronics &Information Technology, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263
|
[15] |
WU Xiaohuan, ZHU Weiping, and YAN Jun. Direction of arrival estimation for off-grid signals based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2016, 16(7): 2004–2016. doi: 10.1109/JSEN.2015.2508059
|
[16] |
DAI Jisheng, BAO Xu, XU Weichao, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 46–50. doi: 10.1109/LSP.2016.2636319
|
[17] |
TIAN Ye, SUN Xiaoying, and ZHAO Shishun. DOA and power estimation using a sparse representation of second-order statistics vector and -norm approximation[J]. Signal Processing, 2014, 105: 98–108. doi: 10.1016/j.sigpro.2014.05.014
|
[18] |
HE Zhenqing, SHI Zhiping, and HUANG Lei. Covariance sparsity-aware DOA estimation for nonuniform noise[J]. Digital Signal Processing, 2014, 28: 75–81. doi: 10.1016/j.dsp.2014.02.013
|
[19] |
ZHANG Xiaowei, JIANG Tao, LI Yingsong, et al. An off-grid DOA estimation method using proximal splitting and successive nonconvex sparsity approximation[J]. IEEE Access, 2019, 7: 66764–66773. doi: 10.1109/ACCESS.2019.2917309
|
[20] |
OTTERSTEN B, STOICA P, and ROY R. Covariance matching estimation techniques for array signal processing applications[J]. Digital Signal Processing, 1998, 8(3): 185–210. doi: 10.1006/dspr.1998.0316
|
[21] |
HORN R A and JOHNSON C R. Matrix Analysis[M]. Cambridge, U.K: Cambridge University Press, 1985: 1–162.
|
[22] |
ARLOT S and CELISSE A. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4: 40–79. doi: 10.1214/09-SS054
|
[23] |
ZHOU Qing, ZHENG Hong, WU Xiongbin, et al. Fractional Fourier transform-based radio frequency interference suppression for high-frequency surface wave radar[J]. Remote Sensing, 2020, 12(1): 75. doi: 10.3390/rs12010075
|
[24] |
DAS A. A Bayesian sparse-plus-low-rank matrix decomposition method for direction-of-arrival tracking[J]. IEEE Sensors Journal, 2017, 17(15): 4894–4902. doi: 10.1109/JSEN.2017.2715347
|