Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Hongyan WANG, Ruonan YU, Mian Pan, Zumin WANG. Off-grid DOA Estimation Method Based on Covariance Matrix Reconstruction[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2863-2870. doi: 10.11999/JEIT200697
Citation: Hongyan WANG, Ruonan YU, Mian Pan, Zumin WANG. Off-grid DOA Estimation Method Based on Covariance Matrix Reconstruction[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2863-2870. doi: 10.11999/JEIT200697

Off-grid DOA Estimation Method Based on Covariance Matrix Reconstruction

doi: 10.11999/JEIT200697
Funds:  The National Natural Science Foundation of China(61301258, 61271379), China Postdoctoral Science Foundation(2016M590218), The Key Projects of Natural Science Foundation of Zhejiang Province (LZ21F010002)
  • Received Date: 2020-12-15
  • Rev Recd Date: 2020-12-23
  • Available Online: 2021-02-27
  • Publish Date: 2021-10-18
  • Focusing on the problem of rather large estimation error in Direction Of Arrival (DOA) estimation caused by grid mismatch in the sparse representation model, an Off-Grid DOA estimation method based on Covariance Matrix Reconstruction (OGCMR) is proposed. Firstly, the offset between the DOA and the grid points is incorporated into the constructed spatial discrete sparse representation model of the received data; After that, based on the reconstructed signal covariance matrix, a sparse representation convex optimization problem associated with DOA estimation can be established; Subsequently, a sampling covariance matrix estimation error convex model is constructed, and then this convex set can be explicitly included into the sparse representation model to improve the performance of sparse signal reconstruction; Finally, an alternating optimization method can be exploited to solve the resultant joint optimization problem to acquire the grid offset parameters as well as the off-grid DOA estimation. Numerical simulations show that, compared with the traditional conventional MUltiple SIgnal Classification(MUSIC), L1-SVD, Sparse and Low-Rank Decomposition based Robust MVDR (SLRD-RMVDR) algorithms and so on, the proposed algorithm has rather better angular resolution and higher DOA estimation accuracy.
  • loading
  • [1]
    XU Haiyun, WANG Daming, BA Bin, et al. Direction-of-arrival estimation for both uncorrelated and coherent signals in coprime array[J]. IEEE Access, 2019, 7: 18590–18600. doi: 10.1109/ACCESS.2019.2896979
    [2]
    蒋莹, 王冰切, 韩俊, 等. 基于分布式压缩感知的宽带欠定信号DOA估计[J]. 电子与信息学报, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723

    JIANG Ying, WANG Bingqie, HAN Jun, et al. Underdetermined wideband DOA estimation based on distributed compressive sensing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1690–1697. doi: 10.11999/JEIT180723
    [3]
    林云, 胡强. 多测量向量模型下的修正MUSIC算法[J]. 电子与信息学报, 2018, 40(11): 2584–2589. doi: 10.11999/JEIT180001

    LIN Yun and HU Qiang. Modified MUSIC algorithm for multiple measurement vector models[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2584–2589. doi: 10.11999/JEIT180001
    [4]
    ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    [5]
    SHIKAGAWAI Y and ICHIGE K. High-resolution and low-cost direction-of-arrival estimation by 2q-root-MUSIC method[C]. 2013 IEEE Workshop on Signal Processing Systems (SiPS), Taipei City, China, 2013.
    [6]
    PESAVENTO M and GERSHMAN A B. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1310–1324. doi: 10.1109/78.928686
    [7]
    LIU Yuan, LIU Hongwei, XIA Xianggen, et al. Target localization in multipath propagation environment using dictionary-based sparse representation[J]. IEEE Access, 2019, 7: 150583–150597. doi: 10.1109/ACCESS.2019.2947497
    [8]
    WANG Xianpeng, MENG Dandan, HUANG Mengxing, et al. Reweighted regularized sparse recovery for DOA estimation with unknown mutual coupling[J]. IEEE Communications Letters, 2019, 23(2): 290–293. doi: 10.1109/LCOMM.2018.2884457
    [9]
    HU Bin, WU Xiaochuan, ZHANG Xin, et al. DOA estimation based on compressed sensing with gain/phase uncertainties[J]. IET Radar, Sonar & Navigation, 2018, 12(11): 1346–1352. doi: 10.1049/iet-rsn.2018.5087
    [10]
    CUI Wei, SHEN Qing, LIU Wei, et al. Low complexity DOA estimation for wideband off-grid sources based on re-focused compressive sensing with dynamic dictionary[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(5): 918–930. doi: 10.1109/JSTSP.2019.2932973
    [11]
    MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/TSP.2005.850882
    [12]
    韦娟, 计永祥, 牛俊儒. 一种新的稀疏重构的DOA估计算法[J]. 西安电子科技大学学报: 自然科学版, 2018, 45(5): 13–18. doi: 10.3969/j.issn.1001-2400.2018.05.003

    WEI Juan, JI Yongxiang, and NIU Junru. Novel algorithm for DOA estimation based on the sparse reconstruction[J]. Journal of Xidian University, 2018, 45(5): 13–18. doi: 10.3969/j.issn.1001-2400.2018.05.003
    [13]
    YANG Jie, YANG Yixin, LIAO Guisheng, et al. A super-resolution direction of arrival estimation algorithm for coprime array via sparse Bayesian learning inference[J]. Circuits, Systems, and Signal Processing, 2018, 37(5): 1907–1934. doi: 10.1007/s00034-017-0637-z
    [14]
    王洪雁, 于若男. 基于稀疏和低秩恢复的稳健DOA估计方法[J]. 电子与信息学报, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263

    WANG Hongyan and YU Ruonan. Sparse and low rank recovery based robust DOA estimation method[J]. Journal of Electronics &Information Technology, 2020, 42(3): 589–596. doi: 10.11999/JEIT190263
    [15]
    WU Xiaohuan, ZHU Weiping, and YAN Jun. Direction of arrival estimation for off-grid signals based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2016, 16(7): 2004–2016. doi: 10.1109/JSEN.2015.2508059
    [16]
    DAI Jisheng, BAO Xu, XU Weichao, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 46–50. doi: 10.1109/LSP.2016.2636319
    [17]
    TIAN Ye, SUN Xiaoying, and ZHAO Shishun. DOA and power estimation using a sparse representation of second-order statistics vector and -norm approximation[J]. Signal Processing, 2014, 105: 98–108. doi: 10.1016/j.sigpro.2014.05.014
    [18]
    HE Zhenqing, SHI Zhiping, and HUANG Lei. Covariance sparsity-aware DOA estimation for nonuniform noise[J]. Digital Signal Processing, 2014, 28: 75–81. doi: 10.1016/j.dsp.2014.02.013
    [19]
    ZHANG Xiaowei, JIANG Tao, LI Yingsong, et al. An off-grid DOA estimation method using proximal splitting and successive nonconvex sparsity approximation[J]. IEEE Access, 2019, 7: 66764–66773. doi: 10.1109/ACCESS.2019.2917309
    [20]
    OTTERSTEN B, STOICA P, and ROY R. Covariance matching estimation techniques for array signal processing applications[J]. Digital Signal Processing, 1998, 8(3): 185–210. doi: 10.1006/dspr.1998.0316
    [21]
    HORN R A and JOHNSON C R. Matrix Analysis[M]. Cambridge, U.K: Cambridge University Press, 1985: 1–162.
    [22]
    ARLOT S and CELISSE A. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4: 40–79. doi: 10.1214/09-SS054
    [23]
    ZHOU Qing, ZHENG Hong, WU Xiongbin, et al. Fractional Fourier transform-based radio frequency interference suppression for high-frequency surface wave radar[J]. Remote Sensing, 2020, 12(1): 75. doi: 10.3390/rs12010075
    [24]
    DAS A. A Bayesian sparse-plus-low-rank matrix decomposition method for direction-of-arrival tracking[J]. IEEE Sensors Journal, 2017, 17(15): 4894–4902. doi: 10.1109/JSEN.2017.2715347
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1576) PDF downloads(193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return