Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Lu LI, Lan DU, Haonan HE, Chen LI, Sheng DENG. Multi-level Feature Fusion SAR Automatic Target Recognition Based on Deep Forest[J]. Journal of Electronics & Information Technology, 2021, 43(3): 606-614. doi: 10.11999/JEIT200685
Citation: Lu LI, Lan DU, Haonan HE, Chen LI, Sheng DENG. Multi-level Feature Fusion SAR Automatic Target Recognition Based on Deep Forest[J]. Journal of Electronics & Information Technology, 2021, 43(3): 606-614. doi: 10.11999/JEIT200685

Multi-level Feature Fusion SAR Automatic Target Recognition Based on Deep Forest

doi: 10.11999/JEIT200685
Funds:  The National Natural Science Foundation of China (61771362)
  • Received Date: 2020-08-05
  • Rev Recd Date: 2020-12-09
  • Available Online: 2020-12-21
  • Publish Date: 2021-03-22
  • In most of Synthetic Aperture Radar (SAR) target recognition methods, only the amplitude feature, i.e., intensity of pixels, is used to recognize targets. Nevertheless, due to the speckle noise, only using the amplitude feature will affect the recognition performance. For further improving the recognition performance, in this paper, a novel multi-level feature fusion target recognition method based on deep forest for SAR images is proposed. At First, in the feature extraction step, two kinds of features, i.e., the multi-level amplitude feature and the multi-level Dense Scale-Invariant Feature Transform (Dense-SIFT) feature are extracted. The amplitude feature describes intensity information and the Dense-SIFT feature describes structure information. Furthermore, for each feature, its corresponding multi-level features are extracted to represent target information from local to global. Then, for reflecting target information more comprehensive and sufficient, the multi-level amplitude feature and the multi-level Dense-SIFT feature are jointly utilized profiting from the idea of deep forest. On the one hand, the cascade structure can fusion multi-level amplitude feature and the multi-level Dense-SIFT feature steadily. On the other hand, the deep feature representation can be mined by layer-by-layer feature transformation. Finally, the fusion feature is used to recognize targets. Experiments on the moving and stationary target acquisition and recognition data show that the proposed method is an effective target recognition method, and the recognition performance is robust to the hyper-parameters.
  • loading
  • 姜文, 牛杰, 吴一荣, 等. 机载多通道SAR运动目标方位向速度和法向速度联合估计算法[J]. 电子与信息学报, 2020, 42(6): 1542–1548. doi: 10.11999/JEIT190672

    JIANG Wen, NIU Jie, WU Yirong, et al. Joint estimation algorithm for azimuth velocity and normal velocity of moving targets in airborne multi-channel SAR[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1542–1548. doi: 10.11999/JEIT190672
    杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9(1): 34–54. doi: 10.12000/JR19104

    DU Lan, WANG Zhaocheng, WANG Yan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(1): 34–54. doi: 10.12000/JR19104
    金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083

    JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083
    DU Lan, LI Lu, WEI Di, et al. Saliency-guided single shot multibox detector for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3366–3376. doi: 10.1109/TGRS.2019.2953936
    LI Lu, DU Lan, and WANG Zhaocheng. Target detection based on dual-domain sparse reconstruction saliency in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4230–4243. doi: 10.1109/JSTARS.2018.2874128
    杜兰, 魏迪, 李璐, 等. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783

    DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
    WANG Yan, DU Lan, and DAI Hui. Target discrimination method for SAR images based on semisupervised co-training[J]. Journal of Applied Remote Sensing, 2018, 12(1): 015004. doi: 10.1117/1.JRS.12.015004
    WANG Zhaocheng, DU Lan, and SU Hongtao. Superpixel-level target discrimination for high-resolution SAR images in complex scenes[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3127–3143. doi: 10.1109/JSTARS.2018.2850043
    WANG Ying, HAN Ping, LU Xiaoguang, et al. The performance comparison of adaboost and SVM applied to SAR ATR[C]. 2016 CIE International Conference on Radar, Shanghai, China, 2006. doi: 10.1109/ICR.2006.343515.
    BRYANT M L, WORRELL S W, and DIXON A C. MSE template size analysis for MSTAR data[J]. SPIE, 1998, 3370: 396–405. doi: 10.1117/12.321844.
    DENG Sheng, DU Lan, LI Chen, et al. SAR automatic target recognition based on Euclidean distance restricted autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3323–3333. doi: 10.1109/JSTARS.2017.2670083
    TAO Lei, JIANG Xue, LIU Xingzhao, et al. Multiscale supervised kernel dictionary learning for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6281–6297. doi: 10.1109/TGRS.2020.2976203
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893.
    SUN Yongguang, DU Lan, WANG Yan, et al. SAR automatic target recognition based on dictionary learning and joint dynamic sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1777–1781. doi: 10.1109/LGRS.2016.2608578
    HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/TGRS.2019.2947634
    GAO Fei, LIU Qiuyang, SUN Jinping, et al. Integrated GANs: Semi-supervised SAR target recognition[J]. IEEE Access, 2019, 7: 113999–114013. doi: 10.1109/ACCESS.2019.2935167
    贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899

    HE Fengshou, HE You, LIU Zhunga, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics &Information Technology, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
    ZHOU Zhihua and FENG Ji. Deep forest[J/OL]. https://arxiv.org/abs/1702.08835.pdf, 2020.
    NI Jiacheng and XU Yuelei. SAR automatic target recognition based on a visual cortical system[C]. The 6th International Congress on Image and Signal Processing, Hangzhou, China, 2013. doi: 10.1109/CISP.2013.6745270.
    HUANG Xiayuan, YANG Qiao, and QIAO Hong. Lightweight two-stream convolutional neural network for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, , To be published. doi: 10.1109/LGRS.2020.2983718
    CHO J H and PARK C G. Multiple feature aggregation using convolutional neural networks for SAR image-based automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12): 1882–1886. doi: 10.1109/LGRS.2018.2865608
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (1265) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return