Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Zhanjun JIANG, Qingda LIU. Study on OTFS Channel Estimation Algorithms in High-Speed Mobile Communication Systems[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2878-2885. doi: 10.11999/JEIT200683
Citation: Zhanjun JIANG, Qingda LIU. Study on OTFS Channel Estimation Algorithms in High-Speed Mobile Communication Systems[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2878-2885. doi: 10.11999/JEIT200683

Study on OTFS Channel Estimation Algorithms in High-Speed Mobile Communication Systems

doi: 10.11999/JEIT200683
Funds:  Gansu Province Radio Monitoring and Positioning Innovation Team (2017C-09), The Funded by Lanzhou Jiaotong University "Hundred Young Talents Training Program" (150220232)
  • Received Date: 2020-08-05
  • Rev Recd Date: 2020-12-09
  • Available Online: 2021-02-27
  • Publish Date: 2021-10-18
  • In view of the problem that dual-dispersion channels will reduce the reliability of channel estimation in high-speed mobile environments, a channel estimation algorithm based on compressed sensing is proposed in the input-output model of Orthogonal Time-Frequency-Space (OTFS) modulation system. The maximum Doppler shift and the maximum delay in the channel are employed to determine the size of the pilot transmission matrix in the algorithm. Compared with the traditional Orthogonal Matching Pursuit (OMP) channel estimation algorithms, the pilot resources can be saved in the proposed algorithm while the accuracy of similar channel estimation is guaranteed. Furthermore, the phase rotation of the OTFS modulation symbols is used to improve the rank of the differential matrix. Theoretical analysis and simulation results show that the diversity order of the OTFS system is improved and noise interference is reduced.
  • loading
  • [1]
    FARHANG A, REZAZADEHREYHANI A, DOYLE L E, et al. Low complexity modem structure for OFDM- based orthogonal time frequency space modulation[J]. IEEE Wireless Communications Letters, 2018, 7(3): 344–347. doi: 10.1109/LWC.2017.2776942
    [2]
    杨若男, 张伟涛, 楼顺天. 基于平行因子分析的SIMO-OFDM系统盲信道与符号联合估计算法[J]. 电子与信息学报, 2019, 41(3): 551–555. doi: 10.11999/JEIT180432

    YANG Ruonan, ZHANG Weitao, and LOU Shuntian. Joint blind channel estimation and symbols detection for SIMO-OFDM systems based on PARAFAC[J]. Journal of Electronics &Information Technology, 2019, 41(3): 551–555. doi: 10.11999/JEIT180432
    [3]
    JEON W G, CHANG K H, and CHO Y S. An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels[J]. IEEE Transactions on Communications, 1999, 47(1): 27–32. doi: 10.1109/26.747810
    [4]
    CAI Xiaodong and GIANNAKIS G B. Bounding performance and suppressing intercarrier interference in wireless mobile OFDM[J]. IEEE Transactions on Communications, 2003, 51(12): 2047–2056. doi: 10.1109/TCOMM.2003.820752
    [5]
    SCHNITER P. Low-complexity equalization of OFDM in doubly selective channels[J]. IEEE Transactions on Signal Processing, 2004, 52(4): 1002–1011. doi: 10.1109/TSP.2004.823503
    [6]
    DAS S and SCHNITER P. Max-SINR ISI/ICI-shaping multicarrier communication over the doubly dispersive channel[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5782–5795. doi: 10.1109/TSP.2007.901660
    [7]
    CHOI Y S, VOLTZ P J, and CASSARA F A. On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels[J]. IEEE Transactions on Communications, 2001, 49(8): 1375–1387. doi: 10.1109/26.939860
    [8]
    MOLISCH A F, TOELTSCH M, and VERMANI S. Iterative methods for cancellation of intercarrier interference in OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2007, 56(4): 2158–2167. doi: 10.1109/TVT.2007.897628
    [9]
    FANG Kun, RUGINI L, and LEUS G. Low-complexity block turbo equalization for OFDM systems in time-varying channels[C]. 2007 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, USA, 2008: 5555–5566. doi: 10.1109/ICASSP.2007.366568.
    [10]
    ZHAO Yuping and HAGGMAN S G. Intercarrier interference self-cancellation scheme for OFDM mobile communication systems[J]. IEEE Transactions on Communications, 2001, 49(7): 1185–1191. doi: 10.1109/26.935159
    [11]
    SEATON K A and ARMSTRONG J. Polynomial cancellation coding and finite differences[J]. IEEE Transactions on Information Theory, 2000, 46(1): 311–313. doi: 10.1109/18.817533
    [12]
    KOZEK W and MOLISCH A F. Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1579–1589. doi: 10.1109/49.730463
    [13]
    LIU Ke, KADOUS T, and SAYEED A M. Orthogonal time-frequency signaling over doubly dispersive channels[J]. IEEE Transactions on Information Theory, 2004, 50(11): 2583–2603. doi: 10.1109/TIT.2004.836931
    [14]
    WANG Zhaohui, ZHOU Shengli, GIANNAKIS G B, et al. Frequency-domain oversampling for zero-padded OFDM in underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2012, 37(1): 14–24. doi: 10.1109/JOE.2011.2174070
    [15]
    XIA Xianggen. Precoded and vector OFDM robust to channel spectral nulls and with reduced cyclic prefix length in single transmit antenna systems[J]. IEEE Transactions on Communications, 2001, 49(8): 1363–1374. doi: 10.1109/26.939855
    [16]
    EBIHARA T and LEUS G. Doppler-resilient orthogonal signal-division multiplexing for underwater acoustic communication[J]. IEEE Journal of Oceanic Engineering, 2016, 41(2): 408–427. doi: 10.1109/JOE.2015.2454411
    [17]
    EBIHARA T and MIZUTANI K. Underwater acoustic communication with an orthogonal signal division multiplexing scheme in doubly spread channels[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 47–58. doi: 10.1109/JOE.2013.2245273
    [18]
    崔维嘉, 张鹏, 巴斌. 基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法[J]. 电子与信息学报, 2019, 41(10): 2318–2324. doi: 10.11999/JEIT181181

    CUI Weijia, ZHANG Peng, and BA Bin. Sparse reconstruction OFDM delay estimation algorithm based on bayesian automatic relevance determination[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2318–2324. doi: 10.11999/JEIT181181
    [19]
    叶新荣, 朱卫平, 张爱清, 等. OFDM系统双选择性慢衰落信道的压缩感知估计[J]. 电子与信息学报, 2015, 37(1): 169–174. doi: 10.11999/JEIT140247

    YE Xinrong, ZHU Weiping, ZHANG Aiqing, et al. Compressed sensing based on doubly-selective slow-fading channel estimation in OFDM systems[J]. Journal of Electronics &Information Technology, 2015, 37(1): 169–174. doi: 10.11999/JEIT140247
    [20]
    SHEN Wenqian, DAI Linglong, AN Jianping, et al. Channel estimation for Orthogonal Time Frequency Space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204–4217. doi: 10.1109/TSP.2019.2919411
    [21]
    黄敏, 李兵兵. 基于整体最小二乘的联合信道估计及OFDM信号检测算法[J]. 电子与信息学报, 2014, 36(6): 1448–1453. doi: 10.3724/SP.J.1146.2013.01327

    HUANG Min and LI Bingbing. Joint channel estimation and OFDM signals detection based on total least square[J]. Journal of Electronics &Information Technology, 2014, 36(6): 1448–1453. doi: 10.3724/SP.J.1146.2013.01327
    [22]
    SURABHI G D, AUGUSTINE R M, and CHOCKALINGAM A. On the diversity of uncoded OTFS modulation in doubly-dispersive channels[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3049–3063. doi: 10.1109/TWC.2019.2909205
    [23]
    DAMEN M O, TEWFIK A, and BELFLORE J C. A construction of a space-time code based on number theory[J]. IEEE Transactions on Information Theory, 2002, 48(3): 753–760. doi: 10.1109/18.986032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (5297) PDF downloads(400) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return