Citation: | Bin ZHANG, Yitao ZHOU. DDoS Attack Detection Model Parameter Update Method Based on EWC Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2928-2935. doi: 10.11999/JEIT200682 |
[1] |
WANG Meng, LU Yiqin, and QIN Jiancheng. A dynamic MLP-based DDoS attack detection method using feature selection and feedback[J]. Computers & Security, 2020, 88: 101645. doi: 10.1016/j.cose.2019.101645
|
[2] |
董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
|
[3] |
KEMKER R, MCCLURE M, ABITINO A, et al. Measuring catastrophic forgetting in neural networks[J]. arXiv preprint, arXiv: 1708.02072, 2017.
|
[4] |
KUMARAN D, HASSABIS D, and MCCLELLAND J L. What learning systems do intelligent agents need? Complementary learning systems theory updated[J]. Trends in Cognitive Sciences, 2016, 20(7): 512–534. doi: 10.1016/j.tics.2016.05.004
|
[5] |
POLIKAR R, UPDA L, UPDA S S, et al. Learn++: An incremental learning algorithm for supervised neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
|
[6] |
ZRIBI M and BOUJELBENE Y. The neural networks with an incremental learning algorithm approach for mass classification in breast cancer[J]. Biomedical Data Mining, 2016, 5(118): 2. doi: 10.4172/2090-4924.1000118
|
[7] |
SHIOTANI S, FUKUDA T, and SHIBATA T. A neural network architecture for incremental learning[J]. Neurocomputing, 1995, 9(2): 111–130. doi: 10.1016/0925-2312(94)00061-V
|
[8] |
GEPPERTH A and HAMMER B. Incremental learning algorithms and applications[C]. The 24th European Symposium on Artificial Neural Networks, Bruges, Belgium, 2016: 357–368.
|
[9] |
MALLYA A, DAVIS D, and LAZEBNIK S. Piggyback: Adapting a single network to multiple tasks by learning to mask weights[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 72–88. doi: 10.1007/978-3-030-01225-0_5.
|
[10] |
PÉREZ-SÁNCHEZ B, FONTENLA-ROMERO O, GUIJARRO-BERDIÑAS B, et al. An online learning algorithm for adaptable topologies of neural networks[J]. Expert Systems with Applications, 2013, 40(18): 7294–7304. doi: 10.1016/j.eswa.2013.06.066
|
[11] |
KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521–3526. doi: 10.1073/pnas.1611835114
|
[12] |
CASTRO F M, MARÍN-JIMÉNEZ M J, GUIL N, et al. End-to-end incremental learning[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 241–257. doi: 10.1007/978-3-030-01258-8_15.
|
[13] |
Canadian Institute for Cybersecurity. CIC-DoS-2016[EB/OL]. https://www.unb.ca/cic/datasets/dos-dataset.html, 2020.
|
[14] |
Canadian Institute for Cybersecurity. CES-DDoS-2017[EB/OL]. https://www.unb.ca/cic/datasets/ids-2017.html, 2020.
|
[15] |
Canadian Institute for Cybersecurity. CES-CIC-IDS2018-AWS[EB/OL]. https://www.unb.ca/cic/datasets/ids-2018.html, 2020.
|
[16] |
SHARAFALDIN I, LASHKARI A H, HAKAK S, et al. Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy[C]. 2019 International Carnahan Conference on Security Technology, Chennai, India, 2019: 1–8. doi: 10.1109/CCST.2019.8888419.
|