Citation: | Bin ZHANG, Renjie LIAO. Malicious Domain Name Detection Model Based on CNN and LSTM[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2944-2951. doi: 10.11999/JEIT200679 |
[1] |
ZHAUNIAROVICH Y, KHALIL I, YU Ting, et al. A survey on malicious domains detection through DNS data analysis[J]. ACM Computing Surveys, 2018, 51(4): 67. doi: 10.1145/3191329
|
[2] |
张维维, 龚俭, 刘茜, 等. 基于词素特征的轻量级域名检测算法[J]. 软件学报, 2016, 27(9): 2348–2364. doi: 10.13328/j.cnki.jos.004913
ZHANG Weiwei, GONG Jian, LIU Qian, et al. Lightweight domain name detection algorithm based on morpheme features[J]. Journal of Software, 2016, 27(9): 2348–2364. doi: 10.13328/j.cnki.jos.004913
|
[3] |
SCHIAVONI S, MAGGI F, CAVALLARO L, et al. Phoenix: DGA-based botnet tracking and intelligence[C]. The 11th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Egham, UK, 2014: 192–211. doi: 10.1007/978-3-319-08509-8_11.
|
[4] |
YADAV S, REDDY A K K, REDDY A L N, et al. Detecting algorithmically generated domain-flux attacks with DNS traffic analysis[J]. IEEE/ACM Transactions on Networking, 2012, 20(5): 1663–1677. doi: 10.1109/tnet.2012.2184552
|
[5] |
YU Bin, PAN Jie, HU Jiaming, et al. Character level based detection of DGA domain names[C]. 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 2018: 1–8. doi: 10.1109/ijcnn.2018.8489147.
|
[6] |
SAXE J and BERLIN K. eXpose: A character-level convolutional neural network with embeddings for detecting malicious URLs, file paths and registry keys[EB/OL]. https://arxiv.org/abs/1702.08568, 2017.
|
[7] |
杨路辉, 刘光杰, 翟江涛, 等. 一种改进的卷积神经网络恶意域名检测算法[J]. 西安电子科技大学学报, 2020, 47(1): 37–43. doi: 10.19665/j.issn1001-2400.2020.01.006
YANG Luhui, LIU Guangjie, ZHAI Jiangtao, et al. Improved algorithm for detection of the malicious domain name based on the convolutional neural network[J]. Journal of Xidian University, 2020, 47(1): 37–43. doi: 10.19665/j.issn1001-2400.2020.01.006
|
[8] |
HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
[9] |
WOODBRIDGE J, ANDERSON H S, AHUJA A, et al. Predicting domain generation algorithms with long short-term memory networks[EB/OL]. https://arxiv.org/abs/1611.00791, 2016.
|
[10] |
TRAN D, MAC H, TONG V, et al. A LSTM based framework for handling multiclass imbalance in DGA botnet detection[J]. Neurocomputing, 2018, 275: 2401–2413. doi: 10.1016/j.neucom.2017.11.018
|
[11] |
杜鹏, 丁世飞. 基于混合词向量深度学习模型的DGA域名检测方法[J]. 计算机研究与发展, 2020, 57(2): 433–446. doi: 10.7544/issn1000-1239.2020.20190160
DU Peng and DING Shifei. A DGA domain name detection method based on deep learning models with mixed word embedding[J]. Journal of Computer Research and Development, 2020, 57(2): 433–446. doi: 10.7544/issn1000-1239.2020.20190160
|
[12] |
MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. https://arxiv.org/abs/1301.3781, 2013.
|
[13] |
RAFFEL C and ELLIS D P W. Feed-forward networks with attention can solve some long-term memory problems[EB/OL]. https://arxiv.org/abs/1512.08756, 2015.
|
[14] |
谢金宝, 侯永进, 康守强, 等. 基于语义理解注意力神经网络的多元特征融合中文文本分类[J]. 电子与信息学报, 2018, 40(5): 1258–1265. doi: 10.11999/JEIT170815
XIE Jinbao, HOU Yongjin, KANG Shouqiang, et al. Multi-feature fusion based on semantic understanding attention neural network for Chinese text categorization[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1258–1265. doi: 10.11999/JEIT170815
|
[15] |
Alexa Internet, Inc. Alexa top-ranked websites[EB/OL]. http://s3.amazonaws.com/alexa-static/top-1m.csv.zip, 2020.
|
[16] |
Qihoo 360 Technology Co, Ltd. 360 DGA feeds[EB/OL]. https://data.netlab.360.com/dga/, 2020.
|