Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Qisen WANG, Hua YU, Jie LI, Chao DONG, Fei JI, Yankun CHEN. Sparse Bayesian Learning Based Algorithm for DOA Estimation of Closely Spaced Signals[J]. Journal of Electronics & Information Technology, 2021, 43(3): 708-716. doi: 10.11999/JEIT200656
Citation: Qisen WANG, Hua YU, Jie LI, Chao DONG, Fei JI, Yankun CHEN. Sparse Bayesian Learning Based Algorithm for DOA Estimation of Closely Spaced Signals[J]. Journal of Electronics & Information Technology, 2021, 43(3): 708-716. doi: 10.11999/JEIT200656

Sparse Bayesian Learning Based Algorithm for DOA Estimation of Closely Spaced Signals

doi: 10.11999/JEIT200656
Funds:  The National Natural Science Foundation of China (U1809211, 61771202, 61971198), The Key Program of Marine Economy Development Special Foundation of Guangdong Province (GDNRC [2020]009), Guangdong Basic and Applied Basic Research Foundation (2019A151501104), Open Funding Project of Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources (MESTA-2020-A005)
  • Received Date: 2020-08-03
  • Rev Recd Date: 2021-01-25
  • Available Online: 2021-02-04
  • Publish Date: 2021-03-22
  • Off-grid Direction Of Arrival (DOA) estimation aims to handle the mismatch between the actual DOA and the presumed grid points. For DOAs of closely spaced signals, sparse grid points leads to degradation of accuracy and resolution, although dense grid points can improve the estimation accuracy, it significantly increases the computational burden. To solve this problem, this paper proposes a Sparse Bayesian Learning (SBL) based algorithm for DOA estimation of closely spaced signals, which consists of three steps. Firstly, a novel fixed point iterative method for signal of Laplace priori is derived to pre-estimate the hyper-parameters by maximizing the array’s marginal likelihood function, which results in faster convergence speed compared to other classical SBL algorithms. Secondly, a new grid interpolation method is implemented to optimize a set of grid points, and signal power and noise variance are estimated again to resolve closely spaced DOAs. Finally, an expression of maximum likelihood function with respect to angle is derived to improve the search of the off-grid DOA. Simulation results show that the proposed algorithm has higher accuracy and resolution for closely spaced DOAs with higher computational efficiency compared with other classical algorithms based on SBL.
  • loading
  • 鄢社锋, 马远良. 传感器阵列波束优化设计及应用[M]. 北京: 科学出版社, 2009, 230–235.

    YAN Shefeng and MA Yuanliang. Sensor Array Beampattern Optimization: Theory with Applications[M]. Beijing: Science Press, 2009, 230–235.
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010–3022. doi: 10.1109/TSP.2005.850882
    WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704–3716. doi: 10.1109/TSP.2007.894265
    TIPPING M E and SMOLA A. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211–244.
    BABACAN S D, MOLINA R, and KATSAGGELOS A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53–63. doi: 10.1109/TIP.2009.2032894
    LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning[J]. IEEE Transactions on Wireless Communications, 2012, 11(10): 1–11. doi: 10.1109/TWC.2012.090312.111912
    YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378
    WU Xiaohuan, ZHU Weiping, and YAN Jun. Direction of arrival estimation for off-grid signals based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2016, 16(7): 2004–2016. doi: 10.1109/JSEN.2015.2508059
    郭英, 东润泽, 张坤峰, 等. 基于稀疏贝叶斯学习的多跳频信号DOA估计方法[J]. 电子与信息学报, 2019, 41(3): 516–522. doi: 10.11999/JEIT180435

    GUO Ying, DONG Runze, ZHANG Kunfeng, et al. Direction of arrival estimation for multiple frequency hopping signals based on sparse Bayesian learning[J]. Journal of Electronics &Information Technology, 2019, 41(3): 516–522. doi: 10.11999/JEIT180435
    游康勇, 杨立山, 刘玥良, 等. 基于稀疏贝叶斯学习的网格自适应多源定位[J]. 电子与信息学报, 2018, 40(9): 2150–2157. doi: 10.11999/JEIT171238

    YOU Kangyong, YANG Lishan, LIU Yueliang, et al. Adaptive grid multiple sources localization based on sparse Bayesian learning[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2150–2157. doi: 10.11999/JEIT171238
    DAI Jisheng, BAO Xu, XU Weichao, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 46–50. doi: 10.1109/LSP.2016.2636319
    DAI Jisheng and SO H C. Sparse Bayesian learning approach for outlier-resistant direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 744–756. doi: 10.1109/TSP.2017.2773420
    GEMBA K L, NANNURU S, and GERSTOFT P. Robust ocean acoustic localization with sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(1): 49–60. doi: 10.1109/JSTSP.2019.2900912.
    DAI Jisheng, ZHOU Lei, CHANG Chunqi, et al. Robust Bayesian learning approach for massive MIMO channel estimation[J]. Signal Processing, 2020, 168: 107345. doi: 10.1016/j.sigpro.2019.107345
    ZHENG Rui, XU Xu, YE Zhongfu, et al. Sparse Bayesian learning for off-grid DOA estimation with Gaussian mixture priors when both circular and non-circular sources coexist[J]. Signal Processing, 2019, 161: 124–135. doi: 10.1016/j.sigpro.2019.03.021
    SHI Yunmei, MAO Xingpeng, ZHAO Chunlei, et al. Underdetermined DOA estimation for wideband signals via joint sparse signal reconstruction[J]. IEEE Signal Processing Letters, 2019, 26(10): 1541–1545. doi: 10.1109/LSP.2019.2937381
    ZHOU Changguo, HABER F, and JAGGARD D L. A resolution measure for the MUSIC algorithm and its application to plane wave arrivals contaminated by coherent interference[J]. IEEE Transactions on Signal Processing, 1991, 39(2): 454–463. doi: 10.1109/78.80829
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (2487) PDF downloads(263) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return