Citation: | Hua ZHONG, Mengyuan WANG, Huina SONG, Renchao BAI, Shiping LI, Jiayi CAO, Ronghua ZHAO. An Imaging Algorithm for Diving Highly Squinted SAR Based on Three-Dimensional Equidistant Sphere Analytical Model[J]. Journal of Electronics & Information Technology, 2021, 43(3): 657-664. doi: 10.11999/JEIT200650 |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 123–182.
BAO Zheng, XING Mengdao and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 123–182.
|
马彦恒, 侯建强. 机动合成孔径雷达成像研究现状与发展趋势[J]. 兵器装备工程学报, 2019, 40(11): 111–115. doi: 10.11809/bqzbgcxb2019.11.023
MA Yanheng and HOU Jianqiang. Research status and development trend of maneuvering synthetic aperture radar imaging[J]. Journal of Ordnance Equipment Engineering, 2019, 40(11): 111–115. doi: 10.11809/bqzbgcxb2019.11.023
|
李宁, 别博文, 邢孟道, 等. 基于多普勒重采样的恒加速度大斜视SAR成像算法[J]. 电子与信息学报, 2019, 41(12): 2873–2880. doi: 10.11999/JEIT180953
LI Ning, BIE Bowen, XING Mengdao, et al. A Doppler resampling based imaging algorithm for high squint SAR with constant acceleration[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2873–2880. doi: 10.11999/JEIT180953
|
ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718–6734. doi: 10.1109/TGRS.2015.2447393
|
肖忠源, 徐华平, 李春升. 基于俯冲模型的频域距离走动校正NLCS-SAR成像算法[J]. 电子与信息学报, 2013, 35(5): 1090–1096. doi: 10.3724/SP.J.1146.2012.01207
XIAO Zhongyuan, XU Huaping, and LI Chunsheng. NLCS-SAR imaging algorithm with range-walk correction in frequency domain based on dive model[J]. Journal of Electronics &Information Technology, 2013, 35(5): 1090–1096. doi: 10.3724/SP.J.1146.2012.01207
|
WANG Pengbo, LIU Wei, CHEN Jie, et al. A high-order imaging algorithm for high-resolution spaceborne SAR based on a modified equivalent squint range model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1225–1235. doi: 10.1109/TGRS.2014.2336241
|
LIANG Yi, DANG Yanfeng, LI Guofei, et al. A two-step processing method for diving-mode squint SAR imaging with subaperture data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 811–825. doi: 10.1109/TGRS.2019.2940774
|
党彦锋, 梁毅, 别博文, 等. 俯冲段大斜视SAR子孔径成像二维空变校正方法[J]. 电子与信息学报, 2018, 40(11): 2621–2629. doi: 10.11999/JEIT180021
DANG Yanfeng, LIANG Yi, BIE Bowen, et al. Two-dimension space-variance correction approach for diving highly squinted SAR imaging with sub-aperture[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2621–2629. doi: 10.11999/JEIT180021
|
LI Zhenyu, XING Mengdao, LIANG Yi, et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4023–4038. doi: 10.1109/TGRS.2016.2535391
|
LI Zhenyu, CHEN Jianlai, DU Wentao, et al. Focusing of maneuvering high-squint-mode SAR data based on equivalent range model and wavenumber-domain imaging algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2419–2433. doi: 10.1109/JSTARS.2020.2993466
|
HUANG Bang, ZHANG Shunsheng, WANG Wenqin, et al. High-precision imaging algorithm for highly squinted SAR with 3D acceleration[J]. IEEE Access, 2019, 7: 130399–130409. doi: 10.1109/ACCESS.2019.2940283
|
SUN Guangcai, JIANG Xiuwei, XING Mengdao, et al. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2308–2322. doi: 10.1109/TGRS.2010.2102040
|
LI Gen, MA Yanheng, SHI Lin, et al. KT and Azimuth sub-region deramp-based high-squint SAR imaging algorithm mounted on manoeuvring platforms[J]. IET Radar, Sonar & Navigation, 2020, 14(3): 388–398. doi: 10.1049/iet-rsn.2019.0251
|
LI Zhenyu, LIANG Yi, XING Mengdao, et al. Focusing of highly squinted SAR data with frequency nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 23–27. doi: 10.1109/LGRS.2015.2492681
|