Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Tongjing SUN, Tong LIU, Yang YANG. Sparse Representation Classification Method for Active Sonar Target Based on Multi-order Fractional Fourier Domain Feature Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(3): 809-816. doi: 10.11999/JEIT200634
Citation: Tongjing SUN, Tong LIU, Yang YANG. Sparse Representation Classification Method for Active Sonar Target Based on Multi-order Fractional Fourier Domain Feature Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(3): 809-816. doi: 10.11999/JEIT200634

Sparse Representation Classification Method for Active Sonar Target Based on Multi-order Fractional Fourier Domain Feature Fusion

doi: 10.11999/JEIT200634
Funds:  The Extension Fund from Underwater Test and Control Technology Key Laboratory (JCKYS2018207050)
  • Received Date: 2020-07-30
  • Rev Recd Date: 2021-02-08
  • Available Online: 2021-02-18
  • Publish Date: 2021-03-22
  • Marine environment noise and reverberation interference are serious, and the poor target separability is the bottleneck problem in active sonar target classification and recognition. In order to solve this problem, based on the echo signal model of active sonar target and the principle of FRactional Fourier Transform (FRFT), this paper deduces the multi-order FRFT domain feature representation form, establishes the FRFT domain sparse representation model, and proposes a method to classify the sparse representation of active sonar targets with multi-order FRFT domain feature fusion. The method achieves the purpose of suppressing noise and reverberation interference through the energy aggregation of FRFT and removing the residual of sparse decomposition; Through the fusion of multi-order FRFT domain features, the separability of targets is improved, and the active sonar target classification with low SNR is realized. Experimental results show that the classification accuracy of the proposed method can reach more than 90% when the SNR is about 0 dB.
  • loading
  • 朱埜. 主动声呐检测信息原理[M]. 北京: 科学出版社, 2014: 9–18.

    ZHU Ye. Information Principle of Active Sonar Detection[M]. Beijing: Science Press, 2014: 9–18.
    陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用[M]. 北京: 清华大学出版社, 2009: 36–55.

    TAO Ran, DENG Bing, and WANG Yue. Fractional Fourier Transform and Its Applications[M]. Beijing: Tsinghua University Press, 2009: 36–55.
    OZAKTAS H M and KUTAY M A. The fractional Fourier transform[C]. 2001 European Control Conference (ECC), Porto, Portugal, 2001: 1477–1483. doi: 10.23919/ECC.2001.7076127.
    QIAO Gang, BABAR Z, QING Xin, et al. Resonance spectrum of submerged cylindrical shell extraction using fractional Fourier filter[C]. OCEANS 2017-Aberdeen, Aberdeen, UK, 2017: 1–4. doi: 10.1109/OCEANSE.2017.8084661.
    CANDAN C, KUTAY M A, and OZAKTAS H M. The discrete fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1329–1337. doi: 10.1109/78.839980
    李秀坤, 孟祥夏, 夏峙. 水下目标几何声散射回波在分数阶傅里叶变换域中的特性[J]. 物理学报, 2015, 64(6): 064302. doi: 10.7498/aps.64.064302

    LI Xiukun, MENG Xiangxia, and XIA Zhi. Characteristics of the geometrical scattering waves from underwater target in fractional Fourier transform domain[J]. Acta Physica Sinica, 2015, 64(6): 064302. doi: 10.7498/aps.64.064302
    赵杨, 尚朝轩, 韩壮志, 等. 分数阶傅里叶和压缩感知自适应抗频谱弥散干扰[J]. 电子与信息学报, 2019, 41(5): 1047–1054. doi: 10.11999/JEIT180569

    ZHAO Yang, SHANG Chaoxuan, HAN Zhuangzhi, et al. Fractional Fourier transform and compressed sensing adaptive countering smeared spectrum jamming[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1047–1054. doi: 10.11999/JEIT180569
    陈小龙, 刘宁波, 王国庆, 等. 基于高斯短时分数阶Fourier变换的海面微动目标检测方法[J]. 电子学报, 2014, 42(5): 971–977. doi: 10.3969/j.issn.0372-2112.2014.05.021

    CHEN Xiaolong, LIU Ningbo, WANG Guoqing, et al. Gaussian short-time fractional Fourier transform based detection algorithm of target with micro-motion at sea[J]. Acta Electronica Sinica, 2014, 42(5): 971–977. doi: 10.3969/j.issn.0372-2112.2014.05.021
    邓兵, 陶然, 齐林, 等. 基于分数阶傅里叶变换的混响抑制方法研究[J]. 兵工学报, 2005, 26(6): 761–765. doi: 10.3321/j.issn:1000-1093.2005.06.010

    DENG Bing, TAO Ran, QI Lin, et al. A study on anti-reverberation method based on fractional Fourier transform[J]. Acta Armamentarii, 2005, 26(6): 761–765. doi: 10.3321/j.issn:1000-1093.2005.06.010
    李秀坤, 杨阳, 杨梅. 水下目标回波与混响的分数阶Fourier域盲分离[J]. 哈尔滨工程大学学报, 2019, 40(4): 786–791. doi: 10.11990/jheu.201709135

    LI Xiukun, YANG Yang, and YANG Mei. Blind source separation of underwater target echoes and reverberation in fractional Fourier domain[J]. Journal of Harbin Engineering University, 2019, 40(4): 786–791. doi: 10.11990/jheu.201709135
    梁源, 达新宇. 基于多参数加权分数阶傅里叶变换的星座预编码系统研究与实现[J]. 电子与信息学报, 2018, 40(4): 825–831. doi: 10.11999/JEIT170673

    LIANG Yuan and DA Xinyu. Analysis and implementation of constellation precoding system based on multiple parameters weighted-type fractional Fourier transform[J]. Journal of Electronics &Information Technology, 2018, 40(4): 825–831. doi: 10.11999/JEIT170673
    酒明远, 陈恩庆, 齐林, 等. 基于多核学习的多阶次分数阶傅里叶变换域人脸识别[J]. 光电工程, 2018, 45(6): 170744. doi: 10.12086/oee.2018.170744

    JIU Mingyuan, CHEN Enqing, QI Lin, et al. Multiple order fractional Fourier transformation for face recognition based on multiple kernel learning[J]. Opto-Electronic Engineering, 2018, 45(6): 170744. doi: 10.12086/oee.2018.170744
    达新宇, 王浩波, 罗章凯, 等. 基于双层多参数加权类分数阶傅里叶变换的双极化卫星安全传输方案[J]. 电子与信息学报, 2019, 41(8): 1974–1982. doi: 10.11999/JEIT181135

    DA Xinyu, WANG Haobo, LUO Zhangkai, et al. Dual-polarized satellite security transmission scheme based on double layer multi-parameter weighted-type fractional Fourier transform[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1974–1982. doi: 10.11999/JEIT181135
    汤渭霖. 声呐目标回波的亮点模型[J]. 声学学报, 1994, 19(2): 92–100.

    TANG Weilin. Highlight model of echoes from sonar targets[J]. Acta Acustica, 1994, 19(2): 92–100.
    张天骐, 全盛荣, 强幸子, 等. 基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法[J]. 电子与信息学报, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750

    ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, et al. Time-frequency analysis method based on multi-scale Chirplet sparse decomposition and Wigner-Ville transform[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750
    王逸林, 马世龙, 王晋晋, 等. 基于稀疏重构的色噪声背景下未知线谱信号估计[J]. 电子与信息学报, 2018, 40(11): 2570–2577. doi: 10.11999/JEIT171040

    WANG Yilin, MA Shilong, WANG Jinjin, et al. Estimation of Unknown Line Spectrum under Colored Noise via Sparse Reconstruction[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2570–2577. doi: 10.11999/JEIT171040
    TAO Ran, DENG Bing, and WANG Yue. Research progress of the fractional Fourier transform in signal processing[J]. Science in China Series F, 2006, 49(1): 1–25. doi: 10.1007/s11432-005-0240-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1211) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return