Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
He YAN, Jia HUANG, Ruian LI, Xudong WANG, Jingdong ZHANG, Daiyin ZHU. Research on Video SAR Moving Target Detection Algorithm Based on Improved Faster Region-based CNN[J]. Journal of Electronics & Information Technology, 2021, 43(3): 615-622. doi: 10.11999/JEIT200630
Citation: He YAN, Jia HUANG, Ruian LI, Xudong WANG, Jingdong ZHANG, Daiyin ZHU. Research on Video SAR Moving Target Detection Algorithm Based on Improved Faster Region-based CNN[J]. Journal of Electronics & Information Technology, 2021, 43(3): 615-622. doi: 10.11999/JEIT200630

Research on Video SAR Moving Target Detection Algorithm Based on Improved Faster Region-based CNN

doi: 10.11999/JEIT200630
Funds:  The Special Fund for Basic Scientific Research Business Expenses of Central Universities (NS2019024)
  • Received Date: 2020-07-29
  • Rev Recd Date: 2020-12-14
  • Available Online: 2020-12-21
  • Publish Date: 2021-03-22
  • To solve the problems of inter-frame registration difficult, unclear shadow characteristics of fast moving targets and high false alarm probability in traditional Video Synthetic Aperture Radar (ViSAR) moving target detection methods, a novel video SAR moving target detection method based on improved Faster Region-based Convolutional Neural Networks (Faster R-CNN) is proposed. Combining with the deep learning algorithm of Faster R-CNN, the new method applies the K-means clustering method to preprocess the length, width and aspect ratio of the anchor box. Besides, the Feature Pyramid Networks (FPN) network architecture is used to detect the ‘bright line’ feature of the video SAR moving targets. Compared with traditional methods, the proposed method has the advantages of simple implementation, high detection probability and low false alarm probability. Finally, the effectiveness of the new method is verified by the measured video SAR data obtained from the Mini-SAR system developed by our project team.
  • loading
  • 杨磊, 李埔丞, 李慧娟, 等. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173

    YANG Lei, LI Pucheng, LI Huijuan, et al. Robust and efficient sparse-feature enhancementfor generalized SAR imagery[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173
    邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    肖忠源, 张振华, 马晓萌. 视频SAR发展现状研究[C]. 第三届航天电子战略研究论坛论文集(遥测遥控专刊), 北京, 2017: 37–40.

    XIAO Zhongyuan, ZHANG Zhenhua, and MA Xiaomeng. Research on the development status of video SAR[C]. Aerospace Electronics Strategic Research Forum, Beijing, China, 2017: 37–40.
    苟立婷, 李勇, 朱岱寅, 等. 基于GPU的圆迹视频SAR实时成像算法[J]. 雷达科学与技术, 2019, 17(5): 550–556, 563. doi: 10.3969/j.issn.1672-2337.2019.05.013

    GOU Liting, LI Yong, ZHU Daiyin, et al. A real-time algorithm for circular video SAR imaging based on GPU[J]. Radar Science and Technology, 2019, 17(5): 550–556, 563. doi: 10.3969/j.issn.1672-2337.2019.05.013
    金林, 吴福伟, 杨予昊, 等. 机载视频合成孔径雷达成像技术研究[J]. 微波学报, 2020, 36(1): 45–48. doi: 10.14183/j.cnki.1005-6122.202001008

    JIN Lin, WU Fuwei, YANG Yuhao, et al. Study of airborne video synthetic aperture radar[J]. Journal of Microwaves, 2020, 36(1): 45–48. doi: 10.14183/j.cnki.1005-6122.202001008
    张营, 朱岱寅, 俞翔, 等. 一种VideoSAR动目标阴影检测方法[J]. 电子与信息学报, 2017, 39(9): 2197–2202. doi: 10.11999/JEIT161394

    ZHANG Ying, ZHU Daiyin, YU Xiang, et al. Approach to moving targets shadow detection for VideoSAR[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2197–2202. doi: 10.11999/JEIT161394
    DAMINI A, MANTLE V, and DAVIDSON G. A new approach to coherent change detection in VideoSAR imagery using stack averaged coherence[C]. 2013 IEEE Radar Conference (RadarCon13), Ottawa, Canada, 2013: 1–5.
    丁金闪. 视频SAR成像与动目标阴影检测技术[J]. 雷达学报, 2020, 9(2): 321–334. doi: 10.12000/JR20018

    DING Jinshan. Focusing algorithms and moving target detection based on Video SAR[J]. Journal of Radars, 2020, 9(2): 321–334. doi: 10.12000/JR20018
    韩冬, 周良将, 焦泽坤, 等. 基于改进三维后向投影的多圈圆迹SAR相干三维成像方法[J]. 电子与信息学报, 2021, 43(1): 131–137. doi: 10.11999/JEIT190945

    HAN Dong, ZHOU Liangjiang, JIAO Zekun, et al. A coherent 3-D imaging method for multi-circular SAR based on an improved 3-D back projection algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(1): 131–137. doi: 10.11999/JEIT190945
    朱岱寅, 张营, 俞翔, 等. 微型合成孔径雷达成像信号处理技术[J]. 雷达学报, 2019, 8(6): 793–803. doi: 10.12000/JR19094

    ZHU Daiyin, ZHANG Ying, YU Xiang, et al. Imaging signal processing technology for miniature synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 793–803. doi: 10.12000/JR19094
    张文明, 姚振飞, 高雅昆, 等. 一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型[J]. 电子与信息学报, 2020, 42(5): 1201–1208. doi: 10.11999/JEIT190229

    ZHANG Wenming, YAO Zhenfei, GAO Yakun, et al. A deep convolutional network for saliency object detection with balanced accuracy and high efficiency[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1201–1208. doi: 10.11999/JEIT190229
    HOSANG J, BENENSON R, DOLLÁR P, et al. What makes for effective detection proposals?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4): 814–830. doi: 10.1109/TPAMI.2015.2465908
    ZHAO Liang, LI Chujun, WU Xiaodong, et al. Improved damage characteristics identification method of concrete CT images based on region convolutional neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34(6): 2054018. doi: 10.1142/S021800142054018X
    陶新民, 徐晶, 杨立标, 等. 一种改进的粒子群和K均值混合聚类算法[J]. 电子与信息学报, 2010, 32(1): 92–97. doi: 10.3724/SP.J.1146.2008.01698

    TAO Xinmin, XU Jing, YANG Libiao, et al. Improved cluster algorithm based on K-means and particle swarm optimization[J]. Journal of Electronics &Information Technology, 2010, 32(1): 92–97. doi: 10.3724/SP.J.1146.2008.01698
    侯志强, 刘晓义, 余旺盛, 等. 基于双阈值-非极大值抑制的Faster R-CNN改进算法[J]. 光电工程, 2019, 46(12): 190159. doi: 10.12086/oee.2019.190159

    HOU Zhiqiang, LIU Xiaoyi, YU Wangsheng, et al. Improved algorithm of Faster R-CNN based on double threshold-non-maximum suppression[J]. Opto-Electronic Engineering, 2019, 46(12): 190159. doi: 10.12086/oee.2019.190159
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (1996) PDF downloads(203) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return