Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Zhichao LÜ, Haozhong WANG, Yiqi BAI. Application of Manifold Learning to Shallow Water Acoustic Communication[J]. Journal of Electronics & Information Technology, 2021, 43(3): 767-772. doi: 10.11999/JEIT200629
Citation: Zhichao LÜ, Haozhong WANG, Yiqi BAI. Application of Manifold Learning to Shallow Water Acoustic Communication[J]. Journal of Electronics & Information Technology, 2021, 43(3): 767-772. doi: 10.11999/JEIT200629

Application of Manifold Learning to Shallow Water Acoustic Communication

doi: 10.11999/JEIT200629
  • Received Date: 2020-10-28
  • Rev Recd Date: 2021-02-07
  • Available Online: 2021-02-18
  • Publish Date: 2021-03-22
  • Sallow water acoustic channel is severely affected by time-space variation, which destroys the robustness of underwater acoustic communication system. By introducing manifold learning in the analysis of high dimensional underwater environment and channel equalization processing, a novel underwater acoustic communication algorithm is presented. By establishing the mapping between environment parameter space and signal space, several physical restrictions can be posed on non-linear manifold learning algorithm. Moreover, the sparse property can reduce the dimension of underwater acoustic channel in order to exclude high dimensional non-linear noise from channel time-space variation. Both sound field analysis and shallow water experimental data verify the validity and the robustness of the proposed algorithm.
  • loading
  • 惠俊英. 水下声信道[M]. 北京: 国防工业出版社, 1992: 179.
    LI Qihu, WANG Lei, WEI Chonghua, et al. Theoretical analysis and experimental results of interference striation pattern of underwater target radiated noise in shallow water waveguide[J]. Chinese Journal of Acoustics, 2011, 30(1): 73–80. doi: 10.15949/j.cnki.0217-9776.2011.01.002
    WANG Huakui, ZHAO Ye, WU Bi, et al. Estimation of source parameters based on underwater acoustic interference pattern in shallow water[C]. 2011 IEEE International Conference on Signal Processing, Communications and Computing, Xi'an, China, 2011: 1–4.
    陈守虎, 赵连军, 曹建国, 等. 浅水近距离测量声场的干涉结构分析[J]. 声学学报, 2017, 42(2): 129–142. doi: 10.15949/j.cnki.0371-0025.2017.02.001

    CHEN Shouhu, ZHAO Lianjun, CAO Jianguo, et al. Analytical study on acoustic interference pattern in shallow water[J]. Acta Acustica, 2017, 42(2): 129–142. doi: 10.15949/j.cnki.0371-0025.2017.02.001
    WOLD S, ESBENSEN K, and GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/3): 37–52.
    COX T F and COX M A A. Multidimensional Scaling[M]. 2nd ed. New York: Chapman & Hall/CRC, 2000.
    ROWEIS S T and SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323–2326. doi: 10.1126/science.290.5500.2323
    BELKIN M and NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373–1396. doi: 10.1162/089976603321780317
    DONOHO D L and GRIMES C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5591–5596. doi: 10.1073/pnas.1031596100
    ZHANG Zhenyue and ZHA Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. SIAM Journal on Scientific Computing, 2004, 26(1): 313–338. doi: 10.1137/S1064827502419154
    YANG Jian, LI Fuxin, and WANG Jue. A better scaled local tangent space alignment algorithm[C]. 2005 IEEE International Joint Conference on Neural Networks, Montreal, Canada, 2005: 1006–1011. doi: 10.1109/IJCNN.2005.1555990.
    BAQAR M and ZAIDI S S H. Performance evaluation of linear and multi-linear subspace learning techniques for object classification based on underwater acoustics[C]. The 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2017: 675–683.
    ZHUANG Honghai, LIU Guoguo, ZHANG Xuewu, et al. Dimensionality reduction based on feature points of underwater image mosaic algorithm[J]. Applied Mechanics and Materials, 2013, 462/463: 308–311. doi: 10.4028/www.scientific.net/AMM.462-463.308
    管鲁阳, 鲍明, 张鹏, 等. 基于流形学习的单类分类算法及其在不均衡声目标识别中的应用[J]. 声学学报, 2009, 34(1): 67–73. doi: 10.3321/j.issn:0371-0025.2009.01.010

    GUAN Luyang, BAO Ming, ZHANG Peng, et al. One-class classification algorithm based on manifold learning and its application to imbalanced acoustic target recognition[J]. Acta Acustica, 2009, 34(1): 67–73. doi: 10.3321/j.issn:0371-0025.2009.01.010
    梁春燕, 袁文浩, 李艳玲, 等. 基于判别邻域嵌入算法的说话人识别[J]. 电子与信息学报, 2019, 41(7): 1774–1778. doi: 10.11999/JEIT180761

    LIANG Chunyan, YUAN Wenhao, LI Yanling, et al. Speaker recognition using discriminant neighborhood embedding[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1774–1778. doi: 10.11999/JEIT180761
    刘辉, 杨俊安, 王一. 基于流形学习的声目标特征提取方法研究[J]. 物理学报, 2011, 60(7): 437–443. doi: 10.7498/aps.60.074302

    LIU Hui, YANG Junan, and WANG Yi. A novel approach to research on feature extraction of acoustic targets based on manifold learning[J]. Acta Physica Sinica, 2011, 60(7): 437–443. doi: 10.7498/aps.60.074302
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1204) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return