Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Xiangdong HUANG, Yue GAO. Howling Removal Based on Analytical Design of All-phase Notch Filter[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3043-3049. doi: 10.11999/JEIT200623
Citation: Xiangdong HUANG, Yue GAO. Howling Removal Based on Analytical Design of All-phase Notch Filter[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3043-3049. doi: 10.11999/JEIT200623

Howling Removal Based on Analytical Design of All-phase Notch Filter

doi: 10.11999/JEIT200623
Funds:  The National Natural Science Foundation of China (61671012)
  • Received Date: 2020-07-27
  • Rev Recd Date: 2020-12-15
  • Available Online: 2021-01-05
  • Publish Date: 2021-10-18
  • In order to quickly and accurately suppress the howling effect in hearing aids, this paper presents an analytical design of all-phase Finite Impulse Response(FIR) notch filter with explicit controllable center frequency. Firstly, to obtain the higher accuracy, integer m and decimal λ are introduced to control the central frequency of the notch filter. Then, an even symmetric closed-form analytic formula is designed to complete the design of the notch filter, which shows that the proposed notch filter has linear transmission characteristics and avoids nonlinear distortion. Finally, data extension and interception are carried out to ensure the continuity and linear phase of the output signal. Herein, the proposed notch filter is inserted into hearing aid to suppress the howling for the sake of verifying its performances. The experimental results show that the attenuation value of the proposed filter at the howling frequency can reach –330 dB, and the SNR is 22 dB. Moreover, the proposed filter is of good output waveform quality, low algorithm complexity and high robustness, and it has a certain application prospect.
  • loading
  • [1]
    JINDAPETCH N, CHEWAE S, and PHUKPATTARANONT P. FPGA implementations of an ADALINE adaptive filter for power-line noise cancellation in surface electromyography signals[J]. Measurement, 2012, 45(3): 405–414. doi: 10.1016/j.measurement.2011.11.004
    [2]
    MAHMOODI S N, CRAFT M J, SOUTHWARD S C, et al. Active vibration control using optimized modified acceleration feedback with adaptive line enhancer for frequency tracking[J]. Journal of Sound and Vibration, 2011, 330(7): 1300–1311. doi: 10.1016/j.jsv.2010.10.013
    [3]
    PASCO Y, ROBIN O, BÉLANGER P, et al. Multi-input multi-output feedforward control of multi-harmonic gearbox vibrations using parallel adaptive notch filters in the principal component space[J]. Journal of Sound and Vibration, 2011, 330(22): 5230–5244. doi: 10.1016/j.jsv.2011.06.008
    [4]
    肖玮, 涂亚庆, 刘良兵, 等. 频率估计的差频等长信号加权融合算法[J]. 信号处理, 2011, 27(7): 1106–1111. doi: 10.3969/j.issn.1003-0530.2011.07.023

    XIAO Wei, TU Yaqing, LIU Liangbing, et al. A weight-fusion algorithm for frequency estimation of the signal with the known frequency-difference and the same length[J]. Signal Processing, 2011, 27(7): 1106–1111. doi: 10.3969/j.issn.1003-0530.2011.07.023
    [5]
    FENG Y Q, TANG G C, LIANG R Y, et al. An improved echo cancellation algorithm for hearing aids[C]. The 2015 International Conference on Electronics, Electrical Engineering and Information Science (EEEIS2015), Guangzhou, China, 2016: 362–369. doi: 10.1142/9789814740135_0038.
    [6]
    LIANG Ruiyu, WANG Xia, WANG Qingyun, et al. A joint echo cancellation algorithm for quick suppression of howls in hearing aids[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(4): 565–574. doi: 10.1002/tee.22412
    [7]
    VAN WATERSCHOOT T and MOONEN M. Fifty years of acoustic feedback control: State of the art and future challenges[J]. Proceedings of the IEEE, 2011, 99(2): 288–327. doi: 10.1109/JPROC.2010.2090998
    [8]
    ZAHRADNIK P and VLCEK M. Fast analytical design algorithms for FIR notch filters[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(3): 608–623. doi: 10.1109/TCSI.2003.822404
    [9]
    LAI Xiaoping. Constrained Chebyshev design of FIR filters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2004, 51(3): 143–146. doi: 10.1109/TCSII.2003.821523
    [10]
    孙小君, 周晗, 闫广明. 基于新息的自适应增量Kalman滤波器[J]. 电子与信息学报, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493

    SUN Xiaojun, ZHOU Han, and YAN Guangming. New information based adaptive incremental Kalman filter[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493
    [11]
    维纳·K. 恩格尔, 约翰·G. 普罗克斯, 刘树棠, 译. 数字信号处理: 使用MATLAB[M]. 西安: 西安交通大学出版社, 2002: 181–188.

    INGLE V K and PROAKIS J G, LIU Shutang, translation. Digital Signal Processing[M]. Xi’an: Xi’an Jiaotong University Press, 2002: 181–188.
    [12]
    PRIOAKIS J G and MANOLAKIS D G. Digital Signal Processing: Principle, Algorithms, and Application[M]. New Jersey: Prentice Hall, 2006: 112–114.
    [13]
    PUNCHALARD R, LORSAWATSIRI A, KOSEEYAPORN J, et al. Adaptive IIR notch filters based on new error criteria[J]. Signal Processing, 2008, 88(3): 685–703. doi: 10.1016/j.sigpro.2007.09.010
    [14]
    涂亚庆, 苏奋华, 沈廷鳌, 等. 自适应陷波器的科氏流量计信号频率跟踪方法[J]. 重庆大学学报, 2011, 34(10): 147–152.

    TU Yaqing, SU Fenhua, SHEN Tingao, et al. Frequency tracking method and simulation for Coriolis mass flowmter based on a new adaptive notch filter[J]. Journal of Chongqing University, 2011, 34(10): 147–152.
    [15]
    HUANG Xiangdong, JING Senxue, WANG Zhaohua, et al. Closed-form FIR filter design based on convolution window spectrum interpolation[J]. IEEE Transactions on Signal Processing, 2016, 64(5): 1173–1186. doi: 10.1109/TSP.2015.2494869
    [16]
    黄翔东, 王兆华. 基于两种对称频率采样的全相位FIR滤波器设计[J]. 电子与信息学报, 2007, 29(2): 478–481.

    HUANG Xiangdong and WANG Zhaohua. All-phase FIR filter design based on two kinds of symmetric frequency sampling[J]. Journal of Electronics &Information Technology, 2007, 29(2): 478–481.
    [17]
    CARNEY R. Design of a digital notch filter with tracking requirements[J]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(4): 109–114. doi: 10.1109/tset.1963.4337624
    [18]
    LEOTWASSANA W, PUNCHALARD R, and SILAPHAN W. Adaptive howling canceller using adaptive IIR notch filter: Simulation and implementation[C]. Proceedings of 2003 International Conference on Neural Networks and Signal Processing, Nanjing, China, 2003: 848–851. doi: 10.1109/ICNNSP.2003.1279409.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1190) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return