Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Li ZHANG, Xiaobo CHEN. Feature Selection Algorithm for Dynamically Weighted Conditional Mutual Information[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3028-3034. doi: 10.11999/JEIT200615
Citation: Li ZHANG, Xiaobo CHEN. Feature Selection Algorithm for Dynamically Weighted Conditional Mutual Information[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3028-3034. doi: 10.11999/JEIT200615

Feature Selection Algorithm for Dynamically Weighted Conditional Mutual Information

doi: 10.11999/JEIT200615
Funds:  The National Science and Technology Basic Work Project (2015FY111700-6), The Doctoral Research Fund of Jiangsu University of Technology (KYY19042)
  • Received Date: 2020-07-23
  • Rev Recd Date: 2021-02-05
  • Available Online: 2021-03-19
  • Publish Date: 2021-10-18
  • Feature selection is an essential step in the data preprocessing phase in the fields of machine learning, natural language processing and data mining. In some feature selection algorithms based on information theory, there is a problem that choosing different parameters means choosing different feature selection algorithms. How to determine the dynamic, non-a priori weights and avoid the preset a priori parameters become an urgent problem. A Dynamic Weighted Maximum Relevance and maximum Independence (WMRI) feature selection algorithm is proposed in this paper. Firstly, the algorithm calculates the average value of the new classification information and the retained classification information. Secondly, the standard deviation is used to dynamically adjust the parameter weights of these two types of classification information. At last, WMRI and the other five feature selection algorithms use ten different data sets on three classifiers for the fmi classification metrics validation. The experimental results show that the WMRI method can improve the quality of feature subsets and increase classification accuracy.
  • loading
  • [1]
    CHE Jinxing, YANG Youlong, LI Li, et al. Maximum relevance minimum common redundancy feature selection for nonlinear data[J]. Information Sciences, 2017, 409/410: 68–86. doi: 10.1016/j.ins.2017.05.013
    [2]
    CHEN Zhijun, WU Chaozhong, ZHANG Yishi, et al. Feature selection with redundancy-complementariness dispersion[J]. Knowledge-Based Systems, 2015, 89: 203–217. doi: 10.1016/j.knosys.2015.07.004
    [3]
    张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42(9): 2208–2215. doi: 10.11999/JEIT190320

    ZHANG Tianqi, FAN Congcong, GE Wanying, et al. MIMO signal modulation recognition algorithm based on ICA and feature extraction[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2208–2215. doi: 10.11999/JEIT190320
    [4]
    ZHANG Yishi, ZHANG Qi, CHEN Zhijun, et al. Feature assessment and ranking for classification with nonlinear sparse representation and approximate dependence analysis[J]. Decision Support Systems, 2019, 122: 113064.1–113064.17. doi: 10.1016/j.dss.2019.05.004
    [5]
    ZENG Zilin, ZHANG Hongjun, ZHANG Rui, et al. A novel feature selection method considering feature interaction[J]. Pattern Recognition, 2015, 48(8): 2656–2666. doi: 10.1016/j.patcog.2015.02.025
    [6]
    赵湛, 韩璐, 方震, 等. 基于可穿戴设备的日常压力状态评估研究[J]. 电子与信息学报, 2017, 39(11): 2669–2676. doi: 10.11999/JEIT170120

    ZHAO Zhan, HAN Lu, FANG Zhen, et al. Research on daily stress detection based on wearable device[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2669–2676. doi: 10.11999/JEIT170120
    [7]
    BROWN G, POCOCK A, ZHAO Mingjie, et al. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection[J]. The Journal of Machine Learning Research, 2012, 13(1): 27–66.
    [8]
    MACEDO F, OLIVEIRA M R, PACHECO A, et al. Theoretical foundations of forward feature selection methods based on mutual information[J]. Neurocomputing, 2019, 325: 67–89. doi: 10.1016/j.neucom.2018.09.077
    [9]
    GAO Wanfu, HU Liang, ZHANG Ping, et al. Feature selection by integrating two groups of feature evaluation criteria[J]. Expert Systems with Applications, 2018, 110: 11–19. doi: 10.1016/j.eswa.2018.05.029
    [10]
    肖利军, 郭继昌, 顾翔元. 一种采用冗余性动态权重的特征选择算法[J]. 西安电子科技大学学报, 2019, 46(5): 155–161. doi: 10.19665/j.issn1001-2400.2019.05.022

    XIAO Lijun, GUO Jichang, and GU Xiangyuan. Algorithm for selection of features based on dynamic weights using redundancy[J]. Journal of Xidian University, 2019, 46(5): 155–161. doi: 10.19665/j.issn1001-2400.2019.05.022
    [11]
    WANG Xinzheng, GUO Bing, SHEN Yan, et al. Input feature selection method based on feature set equivalence and mutual information gain maximization[J]. IEEE Access, 2019, 7: 151525–151538. doi: 10.1109/ACCESS.2019.2948095
    [12]
    GAO Wanfu, HU Liang, and ZHANG Ping. Class-specific mutual information variation for feature selection[J]. Pattern Recognition, 2018, 79: 328–339. doi: 10.1016/j.patcog.2018.02.020
    [13]
    WANG Jun, WEI Jinmao, YANG Zhenglu, et al. Feature selection by maximizing independent classification information[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(4): 828–841. doi: 10.1109/TKDE.2017.2650906
    [14]
    GAO Wanfu, HU Liang, ZHANG Ping, et al. Feature selection considering the composition of feature relevancy[J]. Pattern Recognition Letters, 2018, 112: 70–74. doi: 10.1016/j.patrec.2018.06.005
    [15]
    LIN Xiaohui, LI Chao, REN Weijie, et al. A new feature selection method based on symmetrical uncertainty and interaction gain[J]. Computational Biology and Chemistry, 2019, 83: 107149. doi: 10.1016/j.compbiolchem.2019.107149
    [16]
    BENNASAR M, HICKS Y, and SETCHI R. Feature selection using joint mutual information maximisation[J]. Expert Systems with Applications, 2015, 42(22): 8520–8532. doi: 10.1016/j.eswa.2015.07.007
    [17]
    LYU Hongqiang, WAN Mingxi, HAN Jiuqiang, et al. A filter feature selection method based on the maximal information coefficient and Gram-Schmidt orthogonalization for biomedical data mining[J]. Computers in Biology and Medicine, 2017, 89: 264–274. doi: 10.1016/j.compbiomed.2017.08.021
    [18]
    SHARMIN S, SHOYAIB M, ALI A A, et al. Simultaneous feature selection and discretization based on mutual information[J]. Pattern Recognition, 2019, 91: 162–174. doi: 10.1016/j.patcog.2019.02.016
    [19]
    SUN Guanglu, LI Jiabin, DAI Jian, et al. Feature selection for IoT based on maximal information coefficient[J]. Future Generation Computer Systems, 2018, 89: 606–616. doi: 10.1016/j.future.2018.05.060
    [20]
    PENG Hanchuan, LONG Fuhui, and DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226–1238. doi: 10.1109/TPAMI.2005.159
    [21]
    MEYER P E, SCHRETTER C, and BONTEMPI G. Information-theoretic feature selection in microarray data using variable complementarity[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(3): 261–274. doi: 10.1109/JSTSP.2008.923858
    [22]
    SPEISER J L, MILLER M E, TOOZE J, et al. A comparison of random forest variable selection methods for classification prediction modeling[J]. Expert Systems with Applications, 2019, 134: 93–101. doi: 10.1016/j.eswa.2019.05.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (1388) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return