Citation: | Li ZHANG, Xiaobo CHEN. Feature Selection Algorithm for Dynamically Weighted Conditional Mutual Information[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3028-3034. doi: 10.11999/JEIT200615 |
[1] |
CHE Jinxing, YANG Youlong, LI Li, et al. Maximum relevance minimum common redundancy feature selection for nonlinear data[J]. Information Sciences, 2017, 409/410: 68–86. doi: 10.1016/j.ins.2017.05.013
|
[2] |
CHEN Zhijun, WU Chaozhong, ZHANG Yishi, et al. Feature selection with redundancy-complementariness dispersion[J]. Knowledge-Based Systems, 2015, 89: 203–217. doi: 10.1016/j.knosys.2015.07.004
|
[3] |
张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42(9): 2208–2215. doi: 10.11999/JEIT190320
ZHANG Tianqi, FAN Congcong, GE Wanying, et al. MIMO signal modulation recognition algorithm based on ICA and feature extraction[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2208–2215. doi: 10.11999/JEIT190320
|
[4] |
ZHANG Yishi, ZHANG Qi, CHEN Zhijun, et al. Feature assessment and ranking for classification with nonlinear sparse representation and approximate dependence analysis[J]. Decision Support Systems, 2019, 122: 113064.1–113064.17. doi: 10.1016/j.dss.2019.05.004
|
[5] |
ZENG Zilin, ZHANG Hongjun, ZHANG Rui, et al. A novel feature selection method considering feature interaction[J]. Pattern Recognition, 2015, 48(8): 2656–2666. doi: 10.1016/j.patcog.2015.02.025
|
[6] |
赵湛, 韩璐, 方震, 等. 基于可穿戴设备的日常压力状态评估研究[J]. 电子与信息学报, 2017, 39(11): 2669–2676. doi: 10.11999/JEIT170120
ZHAO Zhan, HAN Lu, FANG Zhen, et al. Research on daily stress detection based on wearable device[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2669–2676. doi: 10.11999/JEIT170120
|
[7] |
BROWN G, POCOCK A, ZHAO Mingjie, et al. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection[J]. The Journal of Machine Learning Research, 2012, 13(1): 27–66.
|
[8] |
MACEDO F, OLIVEIRA M R, PACHECO A, et al. Theoretical foundations of forward feature selection methods based on mutual information[J]. Neurocomputing, 2019, 325: 67–89. doi: 10.1016/j.neucom.2018.09.077
|
[9] |
GAO Wanfu, HU Liang, ZHANG Ping, et al. Feature selection by integrating two groups of feature evaluation criteria[J]. Expert Systems with Applications, 2018, 110: 11–19. doi: 10.1016/j.eswa.2018.05.029
|
[10] |
肖利军, 郭继昌, 顾翔元. 一种采用冗余性动态权重的特征选择算法[J]. 西安电子科技大学学报, 2019, 46(5): 155–161. doi: 10.19665/j.issn1001-2400.2019.05.022
XIAO Lijun, GUO Jichang, and GU Xiangyuan. Algorithm for selection of features based on dynamic weights using redundancy[J]. Journal of Xidian University, 2019, 46(5): 155–161. doi: 10.19665/j.issn1001-2400.2019.05.022
|
[11] |
WANG Xinzheng, GUO Bing, SHEN Yan, et al. Input feature selection method based on feature set equivalence and mutual information gain maximization[J]. IEEE Access, 2019, 7: 151525–151538. doi: 10.1109/ACCESS.2019.2948095
|
[12] |
GAO Wanfu, HU Liang, and ZHANG Ping. Class-specific mutual information variation for feature selection[J]. Pattern Recognition, 2018, 79: 328–339. doi: 10.1016/j.patcog.2018.02.020
|
[13] |
WANG Jun, WEI Jinmao, YANG Zhenglu, et al. Feature selection by maximizing independent classification information[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(4): 828–841. doi: 10.1109/TKDE.2017.2650906
|
[14] |
GAO Wanfu, HU Liang, ZHANG Ping, et al. Feature selection considering the composition of feature relevancy[J]. Pattern Recognition Letters, 2018, 112: 70–74. doi: 10.1016/j.patrec.2018.06.005
|
[15] |
LIN Xiaohui, LI Chao, REN Weijie, et al. A new feature selection method based on symmetrical uncertainty and interaction gain[J]. Computational Biology and Chemistry, 2019, 83: 107149. doi: 10.1016/j.compbiolchem.2019.107149
|
[16] |
BENNASAR M, HICKS Y, and SETCHI R. Feature selection using joint mutual information maximisation[J]. Expert Systems with Applications, 2015, 42(22): 8520–8532. doi: 10.1016/j.eswa.2015.07.007
|
[17] |
LYU Hongqiang, WAN Mingxi, HAN Jiuqiang, et al. A filter feature selection method based on the maximal information coefficient and Gram-Schmidt orthogonalization for biomedical data mining[J]. Computers in Biology and Medicine, 2017, 89: 264–274. doi: 10.1016/j.compbiomed.2017.08.021
|
[18] |
SHARMIN S, SHOYAIB M, ALI A A, et al. Simultaneous feature selection and discretization based on mutual information[J]. Pattern Recognition, 2019, 91: 162–174. doi: 10.1016/j.patcog.2019.02.016
|
[19] |
SUN Guanglu, LI Jiabin, DAI Jian, et al. Feature selection for IoT based on maximal information coefficient[J]. Future Generation Computer Systems, 2018, 89: 606–616. doi: 10.1016/j.future.2018.05.060
|
[20] |
PENG Hanchuan, LONG Fuhui, and DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226–1238. doi: 10.1109/TPAMI.2005.159
|
[21] |
MEYER P E, SCHRETTER C, and BONTEMPI G. Information-theoretic feature selection in microarray data using variable complementarity[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(3): 261–274. doi: 10.1109/JSTSP.2008.923858
|
[22] |
SPEISER J L, MILLER M E, TOOZE J, et al. A comparison of random forest variable selection methods for classification prediction modeling[J]. Expert Systems with Applications, 2019, 134: 93–101. doi: 10.1016/j.eswa.2019.05.028
|