Citation: | Ying CHEN, Yiliang WANG. Unsupervised Monocular Depth Estimation Based on Dense Feature Fusion[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2976-2984. doi: 10.11999/JEIT200590 |
[1] |
SNAVELY N, SEITZ S M, and SZELISKI R. Skeletal graphs for efficient structure from motion[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
|
[2] |
狄红卫, 柴颖, 李逵. 一种快速双目视觉立体匹配算法[J]. 光学学报, 2009, 29(8): 2180–2184. doi: 10.3788/AOS20092908.2180
DI Hongwei, CHAI Ying, and LI Kui. A fast binocular vision stereo matching algorithm[J]. Acta Optica Sinica, 2009, 29(8): 2180–2184. doi: 10.3788/AOS20092908.2180
|
[3] |
EIGEN D, PUHRSCH C, and FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2366–2374.
|
[4] |
LIU Fayao, SHEN Chunhua, LIN Guosheng, et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2024–2039. doi: 10.1109/TPAMI.2015.2505283
|
[5] |
LAINA I, RUPPRECHT C, BELAGIANNIS V, et al. Deeper depth prediction with fully convolutional residual networks[C]. The 2016 4th International Conference on 3D Vision, Stanford, USA, 2016: 239–248.
|
[6] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[7] |
周武杰, 潘婷, 顾鹏笠, 等. 基于金字塔池化网络的道路场景深度估计方法[J]. 电子与信息学报, 2019, 41(10): 2509–2515. doi: 10.11999/JEIT180957
ZHOU Wujie, PAN Ting, GU Pengli, et al. Depth estimation of monocular road images based on pyramid scene analysis network[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2509–2515. doi: 10.11999/JEIT180957
|
[8] |
ZHAO Shanshan, FU Huan, GONG Mingming, et al. Geometry-aware symmetric domain adaptation for monocular depth estimation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9780–9790.
|
[9] |
ZHOU Tinghui, BROWN M, SNAVELY N, et al. Unsupervised learning of depth and ego-motion from video[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6612–6619.
|
[10] |
GARG R, B G V K, CARNEIRO G, et al. Unsupervised CNN for single view depth estimation: Geometry to the rescue[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 740–756.
|
[11] |
GODARD C, MAC AODHA O, and BROSTOW G J. Unsupervised monocular depth estimation with left-right consistency[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6602–6611.
|
[12] |
ZHOU Zongwei, SIDDIQUEE M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867. doi: 10.1109/TMI.2019.2959609
|
[13] |
GEIGER A, LENZ P, and URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3354–3361.
|
[14] |
HARTLEY R and ZISSERMAN A. Multiple View Geometry in Computer Vision[M]. 2nd ed. New York: Cambridge University Press, 2003: 262–263.
|
[15] |
RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[16] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
|
[17] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
|
[18] |
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
|
[19] |
KLODT M and VEDALDI A. Supervising the new with the old: Learning SFM from SFM[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 713–728.
|
[20] |
CASSER V, PIRK S, MAHJOURIAN R, et al. Depth prediction without the sensors: Leveraging structure for unsupervised learning from monocular videos[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 8001–8008.
|
[21] |
MEHTA I, SAKURIKAR P, and NARAYANAN P J. Structured adversarial training for unsupervised monocular depth estimation[C]. 2018 International Conference on 3D Vision, Verona, Italy, 2018: 314–323.
|
[22] |
GODARD C, MAC AODHA O, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3827–3837.
|
[23] |
POGGI M, TOSI F, and MATTOCCIA S. Learning monocular depth estimation with unsupervised trinocular assumptions[C]. 2018 International Conference on 3D Vision, Verona, Italy, 2018: 324–333.
|