Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Shiduo ZHAO, Shefeng YAN. Low-complexity Iterative Sparse Channel Estimation for Underwater Acoustic OFDM Systems Based on Generalized Path Identification Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(3): 752-757. doi: 10.11999/JEIT200582
Citation: Shiduo ZHAO, Shefeng YAN. Low-complexity Iterative Sparse Channel Estimation for Underwater Acoustic OFDM Systems Based on Generalized Path Identification Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(3): 752-757. doi: 10.11999/JEIT200582

Low-complexity Iterative Sparse Channel Estimation for Underwater Acoustic OFDM Systems Based on Generalized Path Identification Algorithm

doi: 10.11999/JEIT200582
Funds:  The National Natural Science Foundation of China (61725106)
  • Received Date: 2020-07-15
  • Rev Recd Date: 2020-12-04
  • Available Online: 2020-12-30
  • Publish Date: 2021-03-22
  • In mobile OFDM underwater acoustic communication systems, the compressed sensing-based sparse channel estimation methods suffer from high computational complexity, which is not suitable for real-time communication. To solve this problem, this paper proposes a Generalized Path Identification (GPI) algorithm for estimating uniform Doppler distorted channel. This scheme first constructs equivalent transmitted symbols using Doppler spread matrices, and thus the channel is converted into an equivalent linear time-invariant one. Then the GPI algorithm is utilized to estimate the channel parameters. Furthermore, the GPI algorithm is extended to Turbo receivers to iteratively improve the channel estimation accuracy. Simulation results show that the performance of the proposed method is better than that of the conventional path identification algorithm, and is close to the Orthogonal Matching Pursuit (OMP) algorithm. Its computational complexity, however, is much lower than OMP algorithm.
  • loading
  • LI Baosheng, ZHOU Shengli, STOJANOVIC M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198–209. doi: 10.1109/JOE.2008.920471
    LI Baosheng, HUANG Jie, ZHOU Shengli, et al. MIMO-OFDM for high-rate underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 634–644. doi: 10.1109/JOE.2009.2032005
    QIAO Gang, SONG Qingjun, MA Lu, et al. Sparse Bayesian learning for channel estimation in time-varying underwater acoustic OFDM communication[J]. IEEE Access, 2018, 6: 56675–56684. doi: 10.1109/ACCESS.2018.2873406
    WANG Shuche, HE Zhiqiang, NIU Kai, et al. New results on joint channel and impulsive noise estimation and tracking in underwater acoustic OFDM systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2601–2612. doi: 10.1109/TWC.2020.2966622
    YERRAMALLI S, STOJANOVIC M, and MITRA U. Partial FFT demodulation: A detection method for highly Doppler distorted OFDM systems[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5906–5918. doi: 10.1109/TSP.2012.2210547
    王茜竹, 方冬, 吴广富. 基于改进稀疏度自适应匹配算法的免授权非正交多址接入上行传输多用户检测[J]. 电子与信息学报, 2020, 42(9): 2216–2222. doi: 10.11999/JEIT190505

    WANG Qianzhu, FANG Dong, and WU Guangfu. Multi-user detection based on sparsity adaptive matching pursuit compressive sensing for uplink grant-free non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2216–2222. doi: 10.11999/JEIT190505
    BERGER C R, WANG Zhaohui, HUANG Jianzhong, et al. Application of compressive sensing to sparse channel estimation[J]. IEEE Communications Magazine, 2010, 48(11): 164–174. doi: 10.1109/MCOM.2010.5621984
    BERGER C R, ZHOU Shengli, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708–1721. doi: 10.1109/TSP.2009.2038424
    LI Chunguo, SONG Kang, and YANG Luxi. Low computational complexity design over sparse channel estimator in underwater acoustic OFDM communication system[J]. IET Communications, 2017, 11(7): 1143–1151. doi: 10.1049/iet-com.2016.1215
    ARUNKUMAR K P and MURTHY C R. Iterative sparse channel estimation and data detection for underwater acoustic communications using partial interval demodulation[J]. IEEE Transactions on Signal Processing, 2018, 66(19): 5041–5055. doi: 10.1109/TSP.2018.2864599
    TADAYON A and STOJANOVIC M. Iterative sparse channel estimation and spatial correlation learning for multichannel acoustic OFDM systems[J]. IEEE Journal of Oceanic Engineering, 2019, 44(4): 820–836. doi: 10.1109/JOE.2019.2932662
    HUANG Jianzhong, ZHOU Shengli, HUANG Jie, et al. Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1524–1536. doi: 10.1109/JSTSP.2011.2160040
    ZHAO Shiduo, YAN Shefeng, and XU Lijun. Doppler estimation based on HFM signal for underwater acoustic time-varying multipath channel[C]. 2019 IEEE International Conference on Signal Processing, Communications and Computing, Dalian, China, 2019: 1–6. doi: 10.1109/ICSPCC46631.2019.8960810.
    STOJANOVIC M. Low complexity OFDM detector for underwater acoustic channels[C]. The OCEANS 2006, Boston, USA, 2006: 1–6. doi: 10.1109/OCEANS.2006.307057.
    LIU Yinsheng, TAN Zhenhui, HU Hongjie, et al. Channel estimation for OFDM[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4): 1891–1908. doi: 10.1109/COMST.2014.2320074
    ZHAO Shiduo, YAN Shefeng, and XI Junyi. Bidirectional soft-decision feedback equalization for OFDM systems[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1283–1286. doi: 10.1109/LWC.2020.2988659
    TUCHLER M, KOETTER R, and SINGER A C. Turbo equalization: Principles and new results[J]. IEEE Transactions on Communications, 2002, 50(5): 754–767. doi: 10.1109/TCOMM.2002.1006557
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (959) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return