Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Chen ZHAO, Gang QIAO, Feng ZHOU. Underwater Cooperative Target Localization Method Based on Double Orthogonal Moving Autonomous Underwater Vehicles[J]. Journal of Electronics & Information Technology, 2021, 43(3): 834-841. doi: 10.11999/JEIT200570
Citation: Chen ZHAO, Gang QIAO, Feng ZHOU. Underwater Cooperative Target Localization Method Based on Double Orthogonal Moving Autonomous Underwater Vehicles[J]. Journal of Electronics & Information Technology, 2021, 43(3): 834-841. doi: 10.11999/JEIT200570

Underwater Cooperative Target Localization Method Based on Double Orthogonal Moving Autonomous Underwater Vehicles

doi: 10.11999/JEIT200570
Funds:  The National Natural Science Foundation of China (61771152, 61601136, 11774074), The National Key Research and Development Program of China (2017YFC0305702)
  • Received Date: 2020-07-10
  • Rev Recd Date: 2021-01-29
  • Available Online: 2021-02-23
  • Publish Date: 2021-03-22
  • Autonomous Underwater Vehicle (AUV) localization is one of the main methods to locate underwater targets in large areas. Considering the defects of single AUV positioning, such as long positioning period, low positioning coverage area and large accumulation of positioning errors for a long time, a cooperative target localization method based on double orthogonal moving AUVs is proposed. Each AUV locates itself through its own Inertial Navigation System (INS) and Doppler log. Localization process is achieved through the measurement of time difference of arrive between the target and AUV in the course of multiple movements. This method requires two orthogonal moving AUVs with a relative heading angle of 90°to achieve one positioning process by communicating at least two times. Compared with the traditional single mobile sensor positioning method, the proposed method requires shorter positioning period and lower synchronization requirements. Experimental results show that the positioning accuracy of this method is significantly improved, while the effective positioning area is enlarged, and the influence on AUV position error is lower in the long time positioning process.
  • loading
  • 韩云峰, 李昭, 郑翠娥, 等. 一种基于长基线交汇的超短基线定位系统精度评价方法[J]. 物理学报, 2015, 64(9): 094301. doi: 10.7498/aps.64.094301

    HAN Yunfeng, LI Zhao, ZHENG Cuie, et al. A precision evaluation method of USBL positioning systems based on LBL triangulation[J]. Acta Physica Sinica, 2015, 64(9): 094301. doi: 10.7498/aps.64.094301
    王燕, 李晴, 付进, 等. 超短基线定位系统融合分类解模糊技术研究[J]. 电子与信息学报, 2017, 39(6): 1348–1354. doi: 10.11999/JEIT160825

    WANG Yan, LI Qing, FU Jin, et al. Resolving ambiguity using fusion classification for ultra-short baseline positioning systems[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1348–1354. doi: 10.11999/JEIT160825
    孙光才, 王裕旗, 高昭昭, 等. 一种基于短合成孔径的双星干涉精确定位方法[J]. 电子与信息学报, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940

    SUN Guangcai, WANG Yuqi, GAO Zhaozhao, et al. A dual satellite interferometric precise localization method based on short synthetic aperture[J]. Journal of Electronics &Information Technology, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940
    RAMEZANI H, FAZEL F, STOJANOVIC M, et al. Collision tolerant and collision free packet scheduling for underwater acoustic localization[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2584–2595. doi: 10.1109/TWC.2015.2389220
    TAN H P, DIAMANT R, SEAH W K G, et al. A survey of techniques and challenges in underwater localization[J]. Ocean Engineering, 2011, 38(14/15): 1663–1676.
    LIANG Qilian, ZHANG Baoju, ZHAO Chenglin, et al. TDoA for passive localization: Underwater versus terrestrial environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(10): 2100–2108. doi: 10.1109/TPDS.2012.310
    HUANG Huai and ZHENG Y R. Node localization with AoA assistance in multi-hop underwater sensor networks[J]. Ad Hoc Networks, 2018, 78: 32–41. doi: 10.1016/j.adhoc.2018.05.005
    GONG Zijun, LI Cheng, JIANG Fan, et al. AUV-aided localization of underwater acoustic devices based on Doppler shift measurements[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2226–2239. doi: 10.1109/TWC.2019.2963296
    徐复, 惠俊英, 时洁, 等. 多途条件下聚焦波束近程定位[J]. 声学技术, 2007, 26(6): 1101–1107. doi: 10.3969/j.issn.1000-3630.2007.06.007

    XU Fu, HUI Junying, SHI Jie, et al. Focusing beamform location in multipath channel[J]. Technical Acoustics, 2007, 26(6): 1101–1107. doi: 10.3969/j.issn.1000-3630.2007.06.007
    孙文舟, 殷晓冬, 李树军, 等. 用于AUV定位的等效声速剖面改进算法研究[J]. 海洋测绘, 2017, 37(3): 40–44. doi: 10.3969/j.issn.1671-3044.2017.03.009

    SUN Wenzhou, YIN Xiaodong, LI Shujun et al. AUV positioning based on equivalent sound speed profile improved algorithm[J]. Hydrographic Surveying and Charting, 2017, 37(3): 40–44. doi: 10.3969/j.issn.1671-3044.2017.03.009
    周伟, 门丽杰, 梅继丹, 等. 浅海三元阵近程被动定位实验研究[J]. 哈尔滨工程大学学报, 2009, 30(5): 547–551. doi: 10.3969/j.issn.1006-7043.2009.05.015

    ZHOU Wei, MEN Lijie, MEI Jidan, et al. Experimental research on passive near field ranging of a three-sensor array in shallow water[J]. Journal of Harbin Engineering University, 2009, 30(5): 547–551. doi: 10.3969/j.issn.1006-7043.2009.05.015
    QIAO Gang, ZHAO Chen, ZHOU Feng, et al. Distributed localization based on signal propagation loss for underwater sensor networks[J]. IEEE Access, 2019, 7: 112985–112995. doi: 10.1109/ACCESS.2019.2934978
    MAKI T, MIZUSHIMA H, URA T, et al. AUV navigation around jacket structures I: Relative localization based on multi-sensor fusion[J]. Journal of Marine Science and Technology, 2012, 17(3): 330–339. doi: 10.1007/s00773-012-0165-2
    DIAMANT R and LAMPE L. Underwater localization with time-synchronization and propagation speed uncertainties[J]. IEEE Transactions on Mobile Computing, 2013, 12(7): 1257–1269. doi: 10.1109/TMC.2012.100
    CAO Jun, HAN Yunfeng, ZANG Dianlun, et al. Linearized iterative method for determining effects of vessel attitude error on single-beacon localization[J]. Applied Acoustics, 2017, 116: 297–302. doi: 10.1016/j.apacoust.2016.10.001
    曹俊. 基于单信标测距的水下载体定位研究[D]. [博士论文], 哈尔滨工程大学, 2017.

    CAO Jun. Research on the positioning of underwater carrier based on single beacon ranging[D]. [Ph. D. dissertation], Harbin Engineering University, 2017.
    ZHENG Cuie, SUN Dajun, CAI Lin, et al. Mobile node localization in underwater wireless networks[J]. IEEE Access, 2018, 6: 17232–17244. doi: 10.1109/ACCESS.2018.2795600
    YUN X, BACHMANN E R, MCGHEE R B, et al. Testing and evaluation of an integrated GPS/INS system for small AUV navigation[J]. IEEE Journal of Oceanic Engineering, 1999, 24(3): 396–404. doi: 10.1109/48.775301
    安良, 陈励军, 陆佶人, 等. 船载柔性阵基元坐标实时获取技术研究[J]. 数据采集与处理, 2010, 25(1): 86–92. doi: 10.3969/j.issn.1004-9037.2010.01.017

    AN Liang, CHEN Lijun, LU Jiren, et al. Element coordinate measurement of ship-based flexible hydrophone array[J]. Journal of Data Acquisition &Processing, 2010, 25(1): 86–92. doi: 10.3969/j.issn.1004-9037.2010.01.017
    刘若辰, 王英民, 甘甜. 基于线性最小二乘方法的多基地声呐定位算法[J]. 电声技术, 2011, 35(6): 56–60. doi: 10.3969/j.issn.1002-8684.2011.06.014

    LIU Ruochen, WANG Yingmin, and GAN Tian. Space location algorithm for multistatic sonar based on linear least squares method[J]. Audio Engineering, 2011, 35(6): 56–60. doi: 10.3969/j.issn.1002-8684.2011.06.014
    李涛, 屈也频, 梅风华. 基于总体最小二乘的多基地声纳系统定位算法[J]. 探测与控制学报, 2015, 37(3): 82–85.

    LI Tao, QU Yepin, and MEI Fenghua. Multistatic sonar space location algorithm based on total least squares method[J]. Journal of Detection &Control, 2015, 37(3): 82–85.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (831) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return