Citation: | Cong'an XU, Yafei LÜ, Xiaohan ZHANG, Yu LIU, Chenhao CUI, Xiangqi GU. A Discriminative Feature Representation Method Based on Dual Attention Mechanism for Remote Sensing Image Scene Classification[J]. Journal of Electronics & Information Technology, 2021, 43(3): 683-691. doi: 10.11999/JEIT200568 |
CHI Mingmin, PLAZA A, BENEDIKTSSON J A, et al. Big data for remote sensing: Challenges and opportunities[J]. Proceedings of the IEEE, 2016, 104(11): 2207–2219. doi: 10.1109/JPROC.2016.2598228
|
ZHANG Liangpei, ZHANG Lefei, and DU Bo. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 6(4): 22–40. doi: 10.1109/MGRS.2016.2540798
|
CHENG Gong, MA Chengcheng, ZHOU Peicheng, et al. Scene classification of high resolution remote sensing images using convolutional neural networks[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 767–770. doi: 10.1109/IGARSS.2016.7729193.
|
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
|
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
HU Fan, XIA Guisong, YANG Wen, et al. Recent advances and opportunities in scene classification of aerial images with deep models[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4371–4374. doi: 10.1109/IGARSS.2018.8518336.
|
CHENG Gong, YANG Ceyuan, YAO Xiwen, et al. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2811–2821. doi: 10.1109/TGRS.2017.2783902
|
LI Peng, REN Peng, ZHANG Xiaoyu, et al. Region-wise deep feature representation for remote sensing images[J]. Remote Sensing, 2018, 10(6): 871. doi: 10.3390/rs10060871
|
LIU Yanfei, ZHONG Yanfei, and QIN Qianqing. Scene classification based on multiscale convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7109–7121. doi: 10.1109/TGRS.2018.2848473
|
YUAN Yuan, FANG Jie, LU Xiaoqiang, et al. Remote sensing image scene classification using rearranged local features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1779–1792. doi: 10.1109/TGRS.2018.2869101
|
WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155–1167. doi: 10.1109/TGRS.2018.2864987
|
XIONG Wei, LV Yafei, CUI Yaqi, et al. A discriminative feature learning approach for remote sensing image retrieval[J]. Remote Sensing, 2019, 11(3): 281. doi: 10.3390/rs11030281
|
LV Yafei, ZHANG Xiaohan, XIONG Wei, et al. An end-to-end local-global-fusion feature extraction network for remote sensing image scene classification[J]. Remote Sensing, 2019, 11(24): 3006. doi: 10.3390/rs11243006
|
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]. 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014: 1724–1734. doi: 10.3115/v1/D14-1179.
|
XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945
|
CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
|
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 7–12.
|
CHAIB S, LIU Huan, GU Yanfeng, et al. Deep feature fusion for VHR remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4775–4784. doi: 10.1109/TGRS.2017.2700322
|
ZHU Qiqi, ZHONG Yanfei, LIU Yanfei, et al. A deep-local-global feature fusion framework for high spatial resolution imagery scene classification[J]. Remote Sensing, 2018, 10(4): 568. doi: 10.3390/rs10040568
|
叶利华, 王磊, 张文文, 等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报, 2019, 48(6): 698–707. doi: 10.11947/j.AGCS.2019.20180434
YE Lihua, WANG Lei, ZHANG Wenwen, et al. Deep metric learning method for high resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 698–707. doi: 10.11947/j.AGCS.2019.20180434
|