Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Cong'an XU, Yafei LÜ, Xiaohan ZHANG, Yu LIU, Chenhao CUI, Xiangqi GU. A Discriminative Feature Representation Method Based on Dual Attention Mechanism for Remote Sensing Image Scene Classification[J]. Journal of Electronics & Information Technology, 2021, 43(3): 683-691. doi: 10.11999/JEIT200568
Citation: Cong'an XU, Yafei LÜ, Xiaohan ZHANG, Yu LIU, Chenhao CUI, Xiangqi GU. A Discriminative Feature Representation Method Based on Dual Attention Mechanism for Remote Sensing Image Scene Classification[J]. Journal of Electronics & Information Technology, 2021, 43(3): 683-691. doi: 10.11999/JEIT200568

A Discriminative Feature Representation Method Based on Dual Attention Mechanism for Remote Sensing Image Scene Classification

doi: 10.11999/JEIT200568
Funds:  The National Natural Science Foundation of China (61790550, 61790554, 61531020, 61671463)
  • Received Date: 2020-07-10
  • Rev Recd Date: 2020-12-07
  • Available Online: 2020-12-15
  • Publish Date: 2021-03-22
  • Considering the problem of low classification accuracy caused by large intra-class differences and high inter-class similarity in remote sensing image scene classification, a discriminative feature representation method based on dual attention mechanism is proposed. Due to the difference in the importance of the features contained in different channels and the significance of different local regions, the channel-wise and spatial-wise attention module are designed, based on the high-level features extracted by the Convolutional Neural Networks. Relying on the ability to extract contextual information, the Recurrent Neural Network is adopted to learn and output the importance weights of different channels and different local regions, paying more attention to the salient features and salient regions, while ignoring non-salience features and regions, to enhance the discriminative ability of feature representation. The proposed dual attention module can be connected to the last convolutional layer of any convolutional neural network, and the network structure can be trained end-to-end. Comparative experiments are conducted on the two public data sets AID and NWPU45. Compared with the existing methods, the classification accuracy has been significantly improved, and the effectiveness of the proposed method can be verified.
  • loading
  • CHI Mingmin, PLAZA A, BENEDIKTSSON J A, et al. Big data for remote sensing: Challenges and opportunities[J]. Proceedings of the IEEE, 2016, 104(11): 2207–2219. doi: 10.1109/JPROC.2016.2598228
    ZHANG Liangpei, ZHANG Lefei, and DU Bo. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 6(4): 22–40. doi: 10.1109/MGRS.2016.2540798
    CHENG Gong, MA Chengcheng, ZHOU Peicheng, et al. Scene classification of high resolution remote sensing images using convolutional neural networks[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 767–770. doi: 10.1109/IGARSS.2016.7729193.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    HU Fan, XIA Guisong, YANG Wen, et al. Recent advances and opportunities in scene classification of aerial images with deep models[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4371–4374. doi: 10.1109/IGARSS.2018.8518336.
    CHENG Gong, YANG Ceyuan, YAO Xiwen, et al. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2811–2821. doi: 10.1109/TGRS.2017.2783902
    LI Peng, REN Peng, ZHANG Xiaoyu, et al. Region-wise deep feature representation for remote sensing images[J]. Remote Sensing, 2018, 10(6): 871. doi: 10.3390/rs10060871
    LIU Yanfei, ZHONG Yanfei, and QIN Qianqing. Scene classification based on multiscale convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7109–7121. doi: 10.1109/TGRS.2018.2848473
    YUAN Yuan, FANG Jie, LU Xiaoqiang, et al. Remote sensing image scene classification using rearranged local features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1779–1792. doi: 10.1109/TGRS.2018.2869101
    WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155–1167. doi: 10.1109/TGRS.2018.2864987
    XIONG Wei, LV Yafei, CUI Yaqi, et al. A discriminative feature learning approach for remote sensing image retrieval[J]. Remote Sensing, 2019, 11(3): 281. doi: 10.3390/rs11030281
    LV Yafei, ZHANG Xiaohan, XIONG Wei, et al. An end-to-end local-global-fusion feature extraction network for remote sensing image scene classification[J]. Remote Sensing, 2019, 11(24): 3006. doi: 10.3390/rs11243006
    CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]. 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014: 1724–1734. doi: 10.3115/v1/D14-1179.
    XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945
    CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 7–12.
    CHAIB S, LIU Huan, GU Yanfeng, et al. Deep feature fusion for VHR remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4775–4784. doi: 10.1109/TGRS.2017.2700322
    ZHU Qiqi, ZHONG Yanfei, LIU Yanfei, et al. A deep-local-global feature fusion framework for high spatial resolution imagery scene classification[J]. Remote Sensing, 2018, 10(4): 568. doi: 10.3390/rs10040568
    叶利华, 王磊, 张文文, 等. 高分辨率光学遥感场景分类的深度度量学习方法[J]. 测绘学报, 2019, 48(6): 698–707. doi: 10.11947/j.AGCS.2019.20180434

    YE Lihua, WANG Lei, ZHANG Wenwen, et al. Deep metric learning method for high resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 698–707. doi: 10.11947/j.AGCS.2019.20180434
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1835) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return