Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Lei SUN, Hongmeng ZHANG, Xiuqing MAO, Song GUO, Yongjin HU. Super-resolution Reconstruction Detection Method for DeepFake Hard Compressed Videos[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2967-2975. doi: 10.11999/JEIT200531
Citation: Lei SUN, Hongmeng ZHANG, Xiuqing MAO, Song GUO, Yongjin HU. Super-resolution Reconstruction Detection Method for DeepFake Hard Compressed Videos[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2967-2975. doi: 10.11999/JEIT200531

Super-resolution Reconstruction Detection Method for DeepFake Hard Compressed Videos

doi: 10.11999/JEIT200531
Funds:  The National Key R&D Program of China (2017YFB0801900)
  • Received Date: 2020-06-30
  • Rev Recd Date: 2020-12-31
  • Available Online: 2021-02-02
  • Publish Date: 2021-10-18
  • The forensics methods of DeepFake video generally use convolution neural networks. However, these methods perform poorly on hard compressed DeepFake datasets and make a large number of false detections on real data. To solve the problem above, a method of hard compressed DeepFake video detection based on deep neural network model is proposed, which improves the detection accuracy of hard compressed video by incorporating super-resolution reconstruction technology and recovering the loss of the spatial and temporal information during hard compression. Experiments are performed with the FaceForensics++ Datasets and DFDC (the DeepFake Detection Challenge) Datasets for hard compressed DeepFake video, which improve the test accuracy of single frame and video compared to ResNet50, and effectively alleviate the problem of false detection of real video with hard compression.
  • loading
  • [1]
    陈宇飞, 沈超, 王骞, 等. 人工智能系统安全与隐私风险[J]. 计算机研究与发展, 2019, 56(10): 2135–2150. doi: 10.7544/issn1000-1239.2019.20190415

    CHEN Yufei, SHEN Chao, WANG Qian, et al. Security and privacy risks in artificial intelligence systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2135–2150. doi: 10.7544/issn1000-1239.2019.20190415
    [2]
    Faceswap: Deepfakes software for all[EB/OL]. https://github.com/deepfakes/faceswap, 2018.
    [3]
    KORSHUNOVA I, SHI Wenzhe, DAMBRE J, et al. Fast face-swap using convolutional neural networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3697–3705. doi: 10.1109/ICCV.2017.397.
    [4]
    Faceswap-GAN[EB/OL]. https://github.com/shaoanlu/faceswap-GAN, 2019.
    [5]
    Keras-VGGFace: VGGFace implementation with Keras framework[EB/OL]. https://github.com/rcmalli/keras-vggface, 2019.
    [6]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [7]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [8]
    ZHOU Peng, HAN Xintong, MORARIU V I, et al. Two-Stream neural networks for tampered face detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1831–1839. doi: 10.1109/CVPRW.2017.229.
    [9]
    AFCHAR D, NOZICK V, YAMAGISHI J, et al. MesoNet: A compact facial video forgery detection network[C]. 2018 IEEE International Workshop on Information Forensics and Security, Hong Kong, China, 2018: 1–7. doi: 10.1109/WIFS.2018.8630761.
    [10]
    MATERN F, RIESS C, and STAMMINGER M. Exploiting visual artifacts to expose deepfakes and face manipulations[C]. 2019 IEEE Winter Applications of Computer Vision Workshops, Waikoloa Village, USA, 2019: 83–92. doi: 10.1109/WACVW.2019.00020.
    [11]
    胡永健, 高逸飞, 刘琲贝, 等. 基于图像分割网络的深度假脸视频篡改检测[J]. 电子与信息学报, 2021, 43(1): 162–170. doi: 10.11999/JEIT200077

    HU Yongjian, GAO Yifei, LIU Beibei, et al. Deepfake videos detection based on image segmentation with deep neural networks[J]. Journal of Electronics &Information Technology, 2021, 43(1): 162–170. doi: 10.11999/JEIT200077
    [12]
    RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. Faceforensics++: Learning to detect manipulated facial images[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1–11. doi: 10.1109/iccv.2019.00009.
    [13]
    LI Yuezun and LYU Siwei. Exposing deepFake videos by detecting face warping artifacts[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 46–52.
    [14]
    SCHWARZ H, MARPE D, and WIEGAND T. Overview of the scalable video coding extension of the H. 264/AVC standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(9): 1103–1120. doi: 10.1109/TCSVT.2007.905532
    [15]
    PARK S C, PARK M K, and KANG M G. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21–36. doi: 10.1109/MSP.2003.1203207
    [16]
    JO Y, Oh S W, KANG J, et al. Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3224–3232. doi: 10.1109/CVPR.2018.00340.
    [17]
    NAH S, KIM T H, and LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 257–265. doi: 10.1109/CVPR.2017.35.
    [18]
    RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics: A large-scale video dataset for forgery detection in human faces[EB/OL]. https://arxiv.org/abs/1803.09179, 2018.
    [19]
    NICHOLAS D, ANDREW G, PER K, et al. Deepfakes detection dataset by Google & jigsaw[EB/OL]. 2019. https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html.
    [20]
    LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Deep learning face attributes in the wild[C]. 2015 IEEE International Conference on Computer Vision, Santiago, USA, 2015: 3730–3738. doi: 10.1109/ICCV.2015.425.
    [21]
    SHRIVASTAVA A, GUPTA A, and GIRSHICK R. Training Region-Based object detectors with online hard example mining[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 761–769. doi: 10.1109/CVPR.2016.89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (2097) PDF downloads(173) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return