Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Zhiyu QU, Chaoran WANG, Meng SUN. Tracking Method of Moving Target for Three-satellite TDOA/FDOA/DOA System Based on Improved IEKF Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2871-2877. doi: 10.11999/JEIT200526
Citation: Zhiyu QU, Chaoran WANG, Meng SUN. Tracking Method of Moving Target for Three-satellite TDOA/FDOA/DOA System Based on Improved IEKF Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2871-2877. doi: 10.11999/JEIT200526

Tracking Method of Moving Target for Three-satellite TDOA/FDOA/DOA System Based on Improved IEKF Algorithm

doi: 10.11999/JEIT200526
Funds:  The National Natural Science Foundation of China (61801143), The Fundamental Research Funds for the Central Universities (3072020CF0814)
  • Received Date: 2020-06-29
  • Rev Recd Date: 2020-12-09
  • Available Online: 2020-12-31
  • Publish Date: 2021-10-18
  • In case of the traditional three-satellite time-frequency difference positioning system with unknown elevation, it will produce positioning errors caused by the target speed to the moving state radiation source. A new method of fusion passive tracking is proposed, which uses the Direction Of Arrival (DOA) information of the main star and combines the Time Difference Of Arrival (TDOA) and Frequency Difference Of Arrival (FDOA) information of the three satellites. First, a positioning model is established on the basis of coordinate system transformation, and on this basis, an improved Iterative Extended Kalman Filter (IEKF) algorithm is used to track moving objects of unknown elevation. The simulation results of the algorithm show that this method can realize the positioning, tracking and speed measurement of the moving radiation source without knowing the height information of the target, and the position and speed estimation of the target are improved.
  • loading
  • [1]
    SU Ting and GAO Yong. TDOA estimation of dual-satellites interference localization based on blind separation[J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 696–702. doi: 10.21629/JSEE.2019.04.07
    [2]
    任凯强, 孙正波. 基于虚拟参考站的同步三星时差定位系统广域差分校正算法[J]. 电子与信息学报, 2019, 41(2): 433–439. doi: 10.11999/JEIT180289

    REN Kaiqiang and SUN Zhengbo. Wide area difference calibration algorithm based on virtual reference station for tri-satellite TDOA geolocation system[J]. Journal of Electronics &Information Technology, 2019, 41(2): 433–439. doi: 10.11999/JEIT180289
    [3]
    CHEN Xin, WANG Ding, YIN Jiexin, et al. Augmented Lagrange geolocation algorithm using TDOA measurements and calibration sources in the presence of satellite position errors[J]. AEU - International Journal of Electronics and Communications, 2019, 111: 152900. doi: 10.1016/j.aeue.2019.152900
    [4]
    WU Risheng, ZHANG Yixiong, HUANG Yanan, et al. A novel long-time accumulation method for double-satellite TDOA/FD-OA interference localization[J]. Radio Science, 2018, 53(1): 129–142. doi: 10.1002/2017rs006389
    [5]
    LI Wanchun, CHEN Ruibin, GUO Yuning, et al. Closed form algorithm of double-satellite TDOA+AOA localization based on WGS-84 model[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2354–2367. doi: 10.1016/j.cja.2019.05.016
    [6]
    ULMAN R J and GERANTIOTIS E. Motion detection using TDOA and FDOA measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 759–764. doi: 10.1109/7.937490
    [7]
    孙光才, 王裕旗, 高昭昭, 等. 一种基于短合成孔径的双星干涉精确定位方法[J]. 电子与信息学报, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940

    SUN Guangcai, WANG Yuqi, GAO Zhaozhao, et al. A dual satellite interferometric precise localization method based on short synthetic aperture[J]. Journal of Electronics &Information Technology, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940
    [8]
    张宇阳. 利用三星时频差的运动辐射源定位与测速方法[J]. 电讯技术, 2016, 56(6): 640–645. doi: 10.3969/j.issn.1001-893x.2016.06.008

    ZHANG Yuyang. A mobile emitter localization and velocity estimation method using TDOA and FDOA measurements from three satellites[J]. Telecommunication Engineering, 2016, 56(6): 640–645. doi: 10.3969/j.issn.1001-893x.2016.06.008
    [9]
    向张俊, 郭福成, 张敏, 等. 基于时差频差角度的低轨双星动目标融合跟踪方法[J]. 航天电子对抗, 2016, 32(3): 27–31. doi: 10.3969/j.issn.1673-2421.2016.03.008

    XIANG Zhangjun, GUO Fucheng, ZHANG Min, et al. Tracking method of moving target fusion for low orbit dual-satellite based on TDOA/FDOA/AOA[J]. Aerospace Electronic Warfare, 2016, 32(3): 27–31. doi: 10.3969/j.issn.1673-2421.2016.03.008
    [10]
    郭福成, 李腾. 基于时差和频差的固定多站定位方法及分析[J]. 系统工程与电子技术, 2011, 33(9): 1954–1958. doi: 10.3969/j.issn.1001-506X.2011.09.08

    GUO Fucheng and LI Teng. Passive localization method and its precision analysis based on TDOA and FDOA of fixed sensors[J]. Systems Engineering and Electronics, 2011, 33(9): 1954–1958. doi: 10.3969/j.issn.1001-506X.2011.09.08
    [11]
    朱建丰, 何新生, 郝本建. 基于双星TDOA和主星DOA的空中动目标联合定位技术[J]. 电子学报, 2018, 46(6): 1378–1383. doi: 10.3969/j.issn.0372-2112.2018.06.015

    ZHU Jianfeng, HE Xinsheng, and HAO Benjian. A hybrid localization technology for an aerial moving target based on TDOA of dual-satellite and DOA of main satellite[J]. Acta Electronica Sinica, 2018, 46(6): 1378–1383. doi: 10.3969/j.issn.0372-2112.2018.06.015
    [12]
    DENNIS JR J E and SCHNABEL R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996: 218–236.
    [13]
    HUA Song, HUANG Huiyin, YIN Fangfang, et al. Constant-gain EKF algorithm for satellite attitude determination systems[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(8): 1259–1271. doi: 10.1108/AEAT-03-2017-0088
    [14]
    杨宏, 李亚安, 李国辉. 一种改进扩展卡尔曼滤波新方法[J]. 计算机工程与应用, 2010, 46(19): 18–20. doi: 10.3778/j.issn.1002-8331.2010.19.005

    YANG Hong, LI Ya’an, and LI Guohui. New method of improved extended Kalman falter[J]. Computer Engineering and Applications, 2010, 46(19): 18–20. doi: 10.3778/j.issn.1002-8331.2010.19.005
    [15]
    SHI Hanhai, HE Fajiang, DANG Shuwen, et al. Research on slam algorithm of iterated extended Kalman filtering for multi-sensor fusion[C]. The 3rd International Conference on Communication and Information Processing, Tokyo, Japan, 2017: 242–246. doi: 10.1145/3162957.3162999.
    [16]
    GARCÍA-FERNÁNDEZ A F and SVENSSON L. Gaussian MAP filtering using Kalman optimization[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1336–1349. doi: 10.1109/tac.2014.2372909
    [17]
    赵梓烨, 刘海鸥, 陈慧岩. 分布式电驱动无人高速履带车辆越野环境轨迹预测方法研究[J]. 兵工学报, 2019, 40(4): 680–688. doi: 10.3969/j.issn.1000-1093.2019.04.002

    ZHAO Ziye, LIU Haiou, and CHEN Huiyan. Research on trajectory prediction method of distributed high speed electric drive unmanned tracked vehicle in off-road conditions[J]. Acta Armamentarii, 2019, 40(4): 680–688. doi: 10.3969/j.issn.1000-1093.2019.04.002
    [18]
    HU Zilun and YANG Jianying. Distributed optimal formation algorithm for multi-satellites system with time-varying performance function[J]. International Journal of Control, 2020, 93(5): 1015–1026. doi: 10.1080/00207179.2018.1486512
    [19]
    LUJAN D, CLARK E, and LOVELL T. Optimizing satellite orbital geometries for geolocation using RF localization[C]. The 41st Annual AAS Guidance & Control Conference, Breckenridge, USA, 2018: 85–97.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1157) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return