Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Yupu CHEN, Xiaochuan MA, Xuan LI. A New Coprime Array with High Degree of Freedom Based on the Difference and Sum Co-array[J]. Journal of Electronics & Information Technology, 2021, 43(3): 717-726. doi: 10.11999/JEIT200505
Citation: Yupu CHEN, Xiaochuan MA, Xuan LI. A New Coprime Array with High Degree of Freedom Based on the Difference and Sum Co-array[J]. Journal of Electronics & Information Technology, 2021, 43(3): 717-726. doi: 10.11999/JEIT200505

A New Coprime Array with High Degree of Freedom Based on the Difference and Sum Co-array

doi: 10.11999/JEIT200505
  • Received Date: 2020-06-19
  • Rev Recd Date: 2020-11-10
  • Available Online: 2020-12-05
  • Publish Date: 2021-03-22
  • To deal with the problem that the Degree Of Freedom(DOF) of uniform linear array is limited by the number of elements, a new type of coprime array is proposed called Displaced Coprime Array(DCA).It takes use of the conjugate augmented matrix which is formed by the time and space information of the received signal to obtain the equivalent difference and sum co-array and to estimate the Direction Of Arrival(DOA). DCA places the generalized coprime array at a certain distance from the single array element at the coordinate origin so that the elements of the sum co-array and the difference co-array are complemented. As a result, the use of DOF provided by the sum co-array can be maximized. In this paper, the closed-form expressions of the element positions and the placement distance of DCA are given. Then, the performance of the sum co-array and the difference co-array including the continuous elements and the hole positions is theoretically analyzed, the relationship between the two is given and high DOF of DCA is presented. Multiple simulations verify the effectivity of DOA estimation using DCA.
  • loading
  • YANG Jie, YANG Yixin, LEI Bo, et al. Nonuniform linear array DOA estimation using EM criterion[J]. Digital Signal Processing, 2019, 86: 36–41. doi: 10.1016/j.dsp.2018.12.010
    QIN Guodong, AMIN M G, and ZHANG Y D. DOA estimation exploiting sparse array motions[J]. IEEE Transactions on Signal Processing, 2019, 67(11): 3013–3027. doi: 10.1109/TSP.2019.2911261
    鄢社锋. 优化阵列信号处理(上册)[M]. 北京: 科学出版社, 2018: 1–31.

    YAN Shefeng. Optimal Array Signual Pocssing: Beamformer Design Theory and Methods[M]. Beijing: Science Press, 2018: 1–31.
    HOCTOR R T and KASSAM S A. The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging[J]. Proceedings of the IEEE, 1990, 78(4): 735–752. doi: 10.1109/5.54811
    MOFFET A T. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138
    LIU Chunlin and VAIDYANATHAN P P. Remarks on the spatial smoothing step in coarray MUSIC[J]. IEEE Signal Processing Letters, 2015, 22(9): 1438–1442. doi: 10.1109/lsp.2015.2409153
    PAL P and VAIDYANATHAN P P. Coprime sampling and the music algorithm[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, USA, 2011: 289–294. doi: 10.1109/DSP-SPE.2011.5739227.
    BLOOM G S and GOLOMB S W. Applications of numbered undirected graphs[J]. Proceedings of the IEEE, 1977, 65(4): 562–570. doi: 10.1109/PROC.1977.10517
    PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/tsp.2010.2049264
    LIU Chunlin and VAIDYANATHAN P P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part I: Fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 3997–4012. doi: 10.1109/TSP.2016.2558159
    LIU Chunlin and VAIDYANATHAN P P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part II: High-order extensions[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4203–4217. doi: 10.1109/TSP.2016.2558167
    LIU Chunlin and VAIDYANATHAN P P. Hourglass arrays and other novel 2-D sparse arrays with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(13): 3369–3383. doi: 10.1109/TSP.2017.2690390
    VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    李建峰, 沈明威, 蒋德富. 互质阵中基于降维求根的波达角估计算法[J]. 电子与信息学报, 2018, 40(8): 1853–1859. doi: 10.11999/JEIT171087

    LI Jianfeng, SHEN Mingwei, and JIANG Defu. Reduced-dimensional root finding based direction of arrival estimation for coprime array[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1853–1859. doi: 10.11999/JEIT171087
    AHMED A, ZHANG Y D, and ZHANG Jiankang. Coprime array design with minimum lag redundancy[C]. ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, 2019: 4125–4129. doi: 10.1109/ICASSP.2019.8683315.
    冯明月, 何明浩, 陈昌孝, 等. 基于Bessel先验快速稀疏贝叶斯学习的互质阵列DOA估计[J]. 电子与信息学报, 2018, 40(7): 1604–1611. doi: 10.11999/JEIT170951

    FENG Mingyue, HE Minghao, CHEN Changxiao, et al. DOA estimation for co-prime array based on fast sparse Bayesian learning using Bessel priors[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1604–1611. doi: 10.11999/JEIT170951
    QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838
    ZHANG Yankui, XU Haiyun, ZONG Rong, et al. A novel high degree of freedom sparse array with displaced multistage cascade subarrays[J]. Digital Signal Processing, 2019, 90: 36–45. doi: 10.1016/j.dsp.2019.04.005
    RAZA A, LIU Wei, and SHEN Qing. Thinned coprime array for second-order difference co-array generation with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(8): 2052–2065. doi: 10.1109/TSP.2019.2901380
    孙兵, 阮怀林, 吴晨曦, 等. 基于Toeplitz协方差矩阵重构的互质阵列DOA估计方法[J]. 电子与信息学报, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041

    SUN Bing, RUAN Huailin, WU Chenxi, et al. Direction of arrival estimation with coprime array based on Toeplitz covariance matrix reconstruction[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041
    WANG Xinghua, CHEN Zhenhong, REN Shiwei, et al. DOA estimation based on the difference and sum coarray for coprime arrays[J]. Digital Signal Processing, 2017, 69: 22–31. doi: 10.1016/j.dsp.2017.06.013
    SHAN Zhilong and YUM T S P. A conjugate augmented approach to direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4104–4109. doi: 10.1109/tsp.2005.857012
    SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    CHEN Zhenhong, DING Yingtao, REN Shiwei, et al. A novel nested configuration based on the difference and sum co-array concept[J]. Sensors, 2018, 18(9): 2988. doi: 10.3390/s18092988
    SHEN Qing, LIU Wei, CUI Wei, et al. Extension of nested arrays with the fourth-order difference co-array enhancement[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2991–2995. doi: 10.1109/ICASSP.2016.7472226.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1938) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return