Citation: | XU Zhongying, GAO Yingbin, KONG Xiangyu. Novel Adaptive Generalized Eigenvector Estimation Algorithm and Its Characteristic Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(1): 254-260. doi: 10.11999/JEIT200477 |
[1] |
CAI Haoyuan, KALOORAZI M F, CHEN Jie, et al. Online dominant generalized eigenvectors extraction via a randomized method[C]. 28th European Signal Processing Conference, Amsterdam, Netherlands, 2021: 2353–2357.
|
[2] |
ZHANG Weitao, LOU Shuntian, and FENG Dazheng. Adaptive quasi-Newton algorithm for source extraction via CCA approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 677–689. doi: 10.1109/TNNLS.2013.2280285
|
[3] |
UCHIDA K and YAMADA I. An ℓ1-penalized adaptive normalized quasi-newton algorithm for sparsity-aware generalized Eigen-subspace tracking[J]. Journal of the Franklin Institute, 2020, 357(8): 5033–5057. doi: 10.1016/j.jfranklin.2020.03.034
|
[4] |
沈海鸥, 王布宏, 刘新波. 基于酉变换-矩阵束的稀布线阵方向图综合[J]. 电子与信息学报, 2016, 38(10): 2667–2673.
SHEN Haiou, WANG Buhong, and LIU Xinbo. Sparse array pattern synthesis using unitary transformation matrix pencil method[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2667–2673.
|
[5] |
GAO Yingbin, KONG Xiangyu, ZHANG Zhengxin, et al. An adaptive self-stabilizing algorithm for minor generalized eigenvector extraction and its convergence analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4869–4881. doi: 10.1109/TNNLS.2017.2783360
|
[6] |
KONG Xiangyu, HU Changhua, and DUAN Zhansheng. Principal Component Analysis Networks and Algorithms[M]. Singapore: Springer, 2017.
|
[7] |
LIU Lijun, SHAO Hongmei, and NAN Dong. Recurrent neural network model for computing largest and smallest generalized eigenvalue[J]. Neurocomputing, 2008, 71(16/18): 3589–3594.
|
[8] |
YANG Jian, HU Han, and XI Hongsheng. Weighted non-linear criterion-based adaptive generalised eigendecomposition[J]. IET Signal Processing, 2013, 7(4): 285–295. doi: 10.1049/iet-spr.2012.0212
|
[9] |
YANG Jian, XI Hongsheng, YANG Feng, et al. RLS-based adaptive algorithms for generalized Eigen-decomposition[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1177–1188. doi: 10.1109/TSP.2005.863040
|
[10] |
ATTALLAH S and ABED-MERAIM K. A fast adaptive algorithm for the generalized symmetric eigenvalue problem[J]. IEEE Signal Processing Letters, 2008, 15: 797–800. doi: 10.1109/LSP.2008.2006346
|
[11] |
TANAKA T. Fast generalized eigenvector tracking based on the power method[J]. IEEE Signal Processing Letters, 2009, 16(11): 969–972. doi: 10.1109/LSP.2009.2027667
|
[12] |
NGUYEN T D, TAKAHASHI N, and YAMADA I. An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure[J]. Multidimensional Systems and Signal Processing, 2013, 24(3): 457–483. doi: 10.1007/s11045-012-0172-9
|
[13] |
LI Hongzeng, DU Boyang, KONG Xiangyu, et al. A generalized minor component extraction algorithm and its analysis[J]. IEEE Access, 2018, 6: 36771–36779. doi: 10.1109/ACCESS.2018.2852060
|
[14] |
孔祥玉, 冯晓伟, 胡昌华. 广义主成分分析算法及应用[M]. 北京: 国防工业出版社, 2018.
KONG Xiangyu, FENG Xiaowei, and HU Changhua. General Principal Component Analysis and Application[M]. Beijing: National Defense Industry Press, 2018.
|
[15] |
FENG Xiaowei, KONG Xiangyu, DUAN Zhansheng, et al. Adaptive generalized Eigen-pairs extraction algorithms and their convergence analysis[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2976–2989. doi: 10.1109/TSP.2016.2537260
|
[16] |
KUSHNER H J and CLARK D S. Stochastic Approximation Methods for Constrained and Unconstrained Systems[M]. New York: Springer, 1978.
|
[17] |
NGUYEN T D and YAMADA I. A unified convergence analysis of normalized PAST algorithms for estimating principal and minor components[J]. Signal Processing, 2013, 93(1): 176–184. doi: 10.1016/j.sigpro.2012.07.020
|
[18] |
NGUYEN T D and YAMADA I. Necessary and sufficient conditions for convergence of the DDT systems of the Normalized PAST algorithms[J]. Signal Processing, 2014, 94: 288–299. doi: 10.1016/j.sigpro.2013.06.017
|
[19] |
O’REGAN G. Matrix theory[M]. O’REGAN G. Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications. Cham: Springer, 2016: 127–139.
|