Advanced Search
Volume 44 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
XU Zhongying, GAO Yingbin, KONG Xiangyu. Novel Adaptive Generalized Eigenvector Estimation Algorithm and Its Characteristic Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(1): 254-260. doi: 10.11999/JEIT200477
Citation: XU Zhongying, GAO Yingbin, KONG Xiangyu. Novel Adaptive Generalized Eigenvector Estimation Algorithm and Its Characteristic Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(1): 254-260. doi: 10.11999/JEIT200477

Novel Adaptive Generalized Eigenvector Estimation Algorithm and Its Characteristic Analysis

doi: 10.11999/JEIT200477
Funds:  The National Natural Science Foundation of China (62106242, 62101579, 61903375), The Natural Science Foundation of Shaanxi Province (2020JM-356)
  • Received Date: 2020-06-12
  • Rev Recd Date: 2021-09-01
  • Available Online: 2021-11-02
  • Publish Date: 2022-01-10
  • In order to develop fast and stable algorithm for estimating generalized eigenvector, a novel neuron-based algorithm is proposed for extracting the single generalized eigenvector. Through analyzing all of the stationary points, it is proved that the single estimation algorithm reaches the steady state if and only if the weight vector of the neural network is equal to the generalized eigenvector corresponding to the smallest generalized eigenvalue of a matrix pencil. The dynamic analysis of the single estimation algorithm is accomplished by the deterministic discrete time method and some boundary conditions are also obtained to guarantee the algorithm’s convergence. Trough applying the inflation technique, the single generalized eigenvector estimation algorithm is extended into a multiple generalized eigenvector estimation algorithm, and the number of the generalized eigenvectors can be increased according to actual requirement. Simulation experiments results prove that the proposed algorithm has good convergence, and the convergence speed is better than some existing algorithms.
  • loading
  • [1]
    CAI Haoyuan, KALOORAZI M F, CHEN Jie, et al. Online dominant generalized eigenvectors extraction via a randomized method[C]. 28th European Signal Processing Conference, Amsterdam, Netherlands, 2021: 2353–2357.
    [2]
    ZHANG Weitao, LOU Shuntian, and FENG Dazheng. Adaptive quasi-Newton algorithm for source extraction via CCA approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 677–689. doi: 10.1109/TNNLS.2013.2280285
    [3]
    UCHIDA K and YAMADA I. An ℓ1-penalized adaptive normalized quasi-newton algorithm for sparsity-aware generalized Eigen-subspace tracking[J]. Journal of the Franklin Institute, 2020, 357(8): 5033–5057. doi: 10.1016/j.jfranklin.2020.03.034
    [4]
    沈海鸥, 王布宏, 刘新波. 基于酉变换-矩阵束的稀布线阵方向图综合[J]. 电子与信息学报, 2016, 38(10): 2667–2673.

    SHEN Haiou, WANG Buhong, and LIU Xinbo. Sparse array pattern synthesis using unitary transformation matrix pencil method[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2667–2673.
    [5]
    GAO Yingbin, KONG Xiangyu, ZHANG Zhengxin, et al. An adaptive self-stabilizing algorithm for minor generalized eigenvector extraction and its convergence analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4869–4881. doi: 10.1109/TNNLS.2017.2783360
    [6]
    KONG Xiangyu, HU Changhua, and DUAN Zhansheng. Principal Component Analysis Networks and Algorithms[M]. Singapore: Springer, 2017.
    [7]
    LIU Lijun, SHAO Hongmei, and NAN Dong. Recurrent neural network model for computing largest and smallest generalized eigenvalue[J]. Neurocomputing, 2008, 71(16/18): 3589–3594.
    [8]
    YANG Jian, HU Han, and XI Hongsheng. Weighted non-linear criterion-based adaptive generalised eigendecomposition[J]. IET Signal Processing, 2013, 7(4): 285–295. doi: 10.1049/iet-spr.2012.0212
    [9]
    YANG Jian, XI Hongsheng, YANG Feng, et al. RLS-based adaptive algorithms for generalized Eigen-decomposition[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1177–1188. doi: 10.1109/TSP.2005.863040
    [10]
    ATTALLAH S and ABED-MERAIM K. A fast adaptive algorithm for the generalized symmetric eigenvalue problem[J]. IEEE Signal Processing Letters, 2008, 15: 797–800. doi: 10.1109/LSP.2008.2006346
    [11]
    TANAKA T. Fast generalized eigenvector tracking based on the power method[J]. IEEE Signal Processing Letters, 2009, 16(11): 969–972. doi: 10.1109/LSP.2009.2027667
    [12]
    NGUYEN T D, TAKAHASHI N, and YAMADA I. An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure[J]. Multidimensional Systems and Signal Processing, 2013, 24(3): 457–483. doi: 10.1007/s11045-012-0172-9
    [13]
    LI Hongzeng, DU Boyang, KONG Xiangyu, et al. A generalized minor component extraction algorithm and its analysis[J]. IEEE Access, 2018, 6: 36771–36779. doi: 10.1109/ACCESS.2018.2852060
    [14]
    孔祥玉, 冯晓伟, 胡昌华. 广义主成分分析算法及应用[M]. 北京: 国防工业出版社, 2018.

    KONG Xiangyu, FENG Xiaowei, and HU Changhua. General Principal Component Analysis and Application[M]. Beijing: National Defense Industry Press, 2018.
    [15]
    FENG Xiaowei, KONG Xiangyu, DUAN Zhansheng, et al. Adaptive generalized Eigen-pairs extraction algorithms and their convergence analysis[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2976–2989. doi: 10.1109/TSP.2016.2537260
    [16]
    KUSHNER H J and CLARK D S. Stochastic Approximation Methods for Constrained and Unconstrained Systems[M]. New York: Springer, 1978.
    [17]
    NGUYEN T D and YAMADA I. A unified convergence analysis of normalized PAST algorithms for estimating principal and minor components[J]. Signal Processing, 2013, 93(1): 176–184. doi: 10.1016/j.sigpro.2012.07.020
    [18]
    NGUYEN T D and YAMADA I. Necessary and sufficient conditions for convergence of the DDT systems of the Normalized PAST algorithms[J]. Signal Processing, 2014, 94: 288–299. doi: 10.1016/j.sigpro.2013.06.017
    [19]
    O’REGAN G. Matrix theory[M]. O’REGAN G. Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications. Cham: Springer, 2016: 127–139.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (307) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return