Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Donghua HUANG, Yongsheng ZHAO, Yongjun ZHAO, Meijuan CHU. An Algebraic Solution for Single-Observer Passive Coherent Location Using DOA-TDOA-FDOA Measurements[J]. Journal of Electronics & Information Technology, 2021, 43(3): 735-744. doi: 10.11999/JEIT200470
Citation: Donghua HUANG, Yongsheng ZHAO, Yongjun ZHAO, Meijuan CHU. An Algebraic Solution for Single-Observer Passive Coherent Location Using DOA-TDOA-FDOA Measurements[J]. Journal of Electronics & Information Technology, 2021, 43(3): 735-744. doi: 10.11999/JEIT200470

An Algebraic Solution for Single-Observer Passive Coherent Location Using DOA-TDOA-FDOA Measurements

doi: 10.11999/JEIT200470
Funds:  The National Natural Science Foundation of China (61703433), The Scientific and Technological Research Project in Henan Province (192102210095)
  • Received Date: 2020-06-11
  • Rev Recd Date: 2021-01-28
  • Available Online: 2021-02-24
  • Publish Date: 2021-03-22
  • To achieve the target localization using single-observer receiving multiple external illuminators, an algebraic solution based on two-step Weighted Least Squares (2WLS) is proposed to find the target position and velocity from Direction Of Arrival (DOA), Time Difference Of Arrival (TDOA), and Frequency Difference Of Arrival (FDOA) measurements. In the first WLS step, the DOA, TDOA, and FDOA measurements are pseudo-linearized by introducing additional parameters and a WLS minimization is used to obtain an rough estimate of target position and velocity; Then in the second WLS step, the relationship between the additional parameters and the target location parameters is utilized to form another set of linear equations, from which the final accurate estimate of target position and velocity are obtained by using WLS minimization again. The Cramer-Row Lower Bound (CRLB) for DOA-TDOA-FDOA-based target position and velocity estimation are derived. Theoretical accuracy analysis and simulation results indicate that the proposed solution can achieve the CRLB at sufficiently small measurement noise levels.
  • loading
  • FU Yan, WAN Xianrong, ZHANG Xun, et al. Side peak interference mitigation in FM-based passive radar via detection identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 778–788. doi: 10.1109/TAES.2017.2665079
    BOLVARDI H, DERAKHTIAN M, and SHEIKHI A. Dynamic clutter suppression and multitarget detection in a DVB-T-based passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1812–1825. doi: 10.1109/TAES.2017.2674138
    WANG Yasen, BAO Qinglong, WANG Dinghe, et al. An experimental study of passive bistatic radar using uncooperative radar as a transmitter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1868–1872. doi: 10.1109/LGRS.2015.2432574
    COLONE F, FALCONE P, BONGIOANNI C, et al. WiFi-based passive bistatic radar: Data processing schemes and experimental results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1061–1079. doi: 10.1109/TAES.2012.6178049
    MA Hui, ANTONIOU M, STOVE A G, et al. Maritime moving target localization using passive GNSS-based multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4808–4819. doi: 10.1109/TGRS.2018.2838682
    ROSADO-SANZ J, JARABO-AMORES M P, MATA-MOYA D, et al. Contoured-beam reflectarray for improving angular coverage in DVB-S passive radars[C]. The 20th International Radar Symposium, Ulm, Germany, 2019: 1–8. doi: 10.23919/IRS.2019.8768107.
    OLSEN K E and ASEN W. Bridging the gap between civilian and military passive radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(2): 4–12. doi: 10.1109/MAES.2017.160030
    EDRICH M, SCHROEDER A, and MEYER F. Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system[J]. IET Radar, Sonar & Navigation, 2014, 8(2): 114–122. doi: 10.1049/iet-rsn.2013.0162
    HOWLAND P E, MAKSIMIUK D, and REITSMA G. FM radio based bistatic radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(3): 107–115. doi: 10.1049/ip-rsn:20045077
    WANG J, WANG H T, and ZHAO Y. Direction finding in frequency-modulated-based passive bistatic radar with a four-element adcock antenna array[J]. IET Radar, Sonar & Navigation, 2011, 5(8): 807–813. doi: 10.1049/iet-rsn.2010.0262
    王海涛, 王俊. 基于压缩感知的无源雷达超分辨DOA估计[J]. 电子与信息学报, 2013, 35(4): 877–881. doi: 10.3724/SP.J.1146.2012.00797

    WANG Haitao and WANG Jun. Super-resolution DOA estimation in passive radar based on compressed sensing[J]. Journal of Electronics &Information Technology, 2013, 35(4): 877–881. doi: 10.3724/SP.J.1146.2012.00797
    MALANOWSKI M and KULPA K. Two methods for target localization in multistatic passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 572–580. doi: 10.1109/taes.2012.6129656
    梁加洋, 赵拥军, 赵闯, 等. 利用约束加权最小二乘的单站外辐射源时差定位算法[J]. 信号处理, 2017, 33(6): 880–886. doi: 10.16798/j.issn.1003-0530.2017.06.014

    LIANG Jiayang, ZHAO Yongjun, ZHAO Chuang, et al. Constrained weighted least squares algorithm for single-observer TDOA location estimation using illuminators of opportunity[J]. Journal of Signal Processing, 2017, 33(6): 880–886. doi: 10.16798/j.issn.1003-0530.2017.06.014
    王鼎, 魏帅. 基于外辐射源的约束总体最小二乘定位算法及其理论性能分析[J]. 中国科学: 信息科学, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397

    WANG Ding and WEI Shuai. The constrained-total-least-squares localization algorithm and performance analysis based on an external illuminator[J]. Scientia Sinica Informationis, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397
    LI Wanchun, WEI Ping, and XIAO Xianci. A robust TDOA-based location method and its performance analysis[J]. Science in China Series F: Information Sciences, 2009, 52(5): 876–882. doi: 10.1007/s11432-009-0101-1
    CHALISE B K, ZHANG Y D, AMIN M G, et al. Target localization in a multi-static passive radar system through convex optimization[J]. Signal Processing, 2014, 102: 207–215. doi: 10.1016/j.sigpro.2014.02.023
    ZHAO Yongsheng, LIU Zhixin, HU Dexiu, et al. Target localisation from bistatic range measurements in multistatic passive radar using MDS[J]. The Journal of Engineering, 2019, 2019(19): 5770–5774. doi: 10.1049/joe.2019.0396
    李晶, 李冬海, 赵拥军. 利用角度和时差的单站外辐射源定位方法[J]. 武汉大学学报: 信息科学版, 2015, 40(2): 227–232. doi: 10.13203/j.whugis20130065

    LI Jing, LI Donghai, and ZHAO Yongjun. Single-observer passive coherent location estimation based on DOA and TDOA[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 227–232. doi: 10.13203/j.whugis20130065
    赵勇胜, 赵拥军, 赵闯, 等. 联合角度和时差的单站无源相干定位加权最小二乘算法[J]. 雷达学报, 2016, 5(3): 302–311. doi: 10.12000/JR15133

    ZHAO Yongsheng, ZHAO Yongjun, ZHAO Chuang, et al. Weighted least squares algorithm for single-observer passive coherent location using DOA and TDOA measurements[J]. Journal of Radars, 2016, 5(3): 302–311. doi: 10.12000/JR15133
    LI Jing, ZHAO Yongjun, and LI Donghai. Accurate single-observer passive coherent location estimation based on TDOA and DOA[J]. Chinese Journal of Aeronautics, 2014, 27(4): 913–923. doi: 10.1016/j.cja.2014.06.004
    赵拥军, 赵勇胜, 赵闯. 基于正则化约束总体最小二乘的单站DOA-TDOA无源定位算法[J]. 电子与信息学报, 2016, 38(9): 2336–2343. doi: 10.11999/JEIT151379

    ZHAO Yongjun, ZHAO Yongsheng, and ZHAO Chuang. Single-observer passive DOA-TDOA location based on regularized constrained total least squares[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2336–2343. doi: 10.11999/JEIT151379
    赵勇胜, 赵闯, 赵拥军. 利用TDOA和FDOA的单站多外辐射源目标定位算法[J]. 四川大学学报: 工程科学版, 2016, 48(S1): 170–177. doi: 10.15961/j.jsuese.2016.s1.025

    ZHAO Yongsheng, ZHAO Chuang, and ZHAO Yongjun. Single-observer multi-illuminators passive location using TDOA and FDOA measurements[J]. Journal of Sichuan University:Engineering Science Edition, 2016, 48(S1): 170–177. doi: 10.15961/j.jsuese.2016.s1.025
    梁加洋, 苏文璞, 赵拥军, 等. 基于联合TDOA/FDOA的单站无源相干定位CWLS算法[J]. 电子信息对抗技术, 2018, 33(5): 31–36. doi: 10.3969/j.issn.1674-2230.2018.05.007

    LIANG Jiayang, SU Wenpu, ZHAO Yongjun, et al. A single-observer passive coherent location CWLS algorithm based on joint TDOA/FDOA[J]. Electronic Information Warfare Technology, 2018, 33(5): 31–36. doi: 10.3969/j.issn.1674-2230.2018.05.007
    赵勇胜, 邵东旭, 赵拥军, 等. 基于约束总体最小二乘的单站TDOA-FDOA定位算法[J]. 电子信息对抗技术, 2016, 31(6): 1–7. doi: 10.3969/j.issn.1674-2230.2016.06.001

    ZHAO Yongsheng, SHAO Dongxu, ZHAO Yongjun, et al. Single-observer TDOA-FDOA location based on constrained total least squares[J]. Electronic Information Warfare Technology, 2016, 31(6): 1–7. doi: 10.3969/j.issn.1674-2230.2016.06.001
    CHAN Y T and HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905–1915. doi: 10.1109/78.301830
    HO K C and XU Wenwei. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453–2463. doi: 10.1109/TSP.2004.831921
    HO K C, LU Xiaoning, and KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684–696. doi: 10.1109/TSP.2006.885744
    HO K C and YANG Le. On the use of a calibration emitter for source localization in the presence of sensor position uncertainty[J]. IEEE Transactions on Signal Processing, 2008, 56(12): 5758–5772. doi: 10.1109/TSP.2008.929870
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (1303) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return