Citation: | Huajie CHEN, Haoran BAI. Subspace Projection Based Track-Before-Detect Scheme for Small Moving Target in Complex Underwater Environment[J]. Journal of Electronics & Information Technology, 2021, 43(3): 826-833. doi: 10.11999/JEIT200446 |
钟雷, 李勇, 牟之英, 等. 未知强杂波下基于DP-TBD的雷达弱目标检测[J]. 系统工程与电子技术, 2019, 41(1): 43–49. doi: 10.3969/j.issn.1001-506X.2019.01.07
ZHONG Lei, LI Yong, MOU Zhiying, et al. Detection method for weak target under unknown strong clutter based on DP-TBD[J]. Systems Engineering and Electronics, 2019, 41(1): 43–49. doi: 10.3969/j.issn.1001-506X.2019.01.07
|
WANG Hui, YI Jianxin, and WAN Xianrong. Greedy algorithm-based track-before-detect in radar systems[J]. IEEE Sensors Journal, 2018, 18(17): 7158–7165. doi: 10.1109/JSEN.2018.2853188
|
BARNIV Y. Dynamic programming solution for detecting dim moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(1): 144–156. doi: 10.1109/TAES.1985.310548
|
BARNIV Y, and KELLA O. Dynamic programming solution for detecting dim moving targets part II: Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(6): 776–788. doi: 10.1109/TAES.1987.310914
|
CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. I. system concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102–108. doi: 10.1109/7.250410
|
HART P E. How the Hough transform was invented [DSP History][J]. IEEE Signal Processing Magazine, 2009, 26(6): 18–22. doi: 10.1109/MSP.2009.934181
|
GUSTAFSSON F, GUNNARSSON F, BERGMAN N, et al. Particle filters for positioning, navigation, and tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 425–437. doi: 10.1109/78.978396
|
ORTON M and FITZGERALD W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 216–223. doi: 10.1109/78.978377
|
YAN Bo, XU Luping, LI Muqing, et al. Track-before-detect algorithm based on dynamic programming for multi-extended-targets detection[J]. IET Signal Processing, 2017, 11(6): 674–686. doi: 10.1049/iet-spr.2016.0582
|
GUO Qiang, LI Zhenwu, SONG Wenming, et al. Parallel computing based dynamic programming algorithm of track-before-detect[J]. Symmetry, 2019, 11(1): 29. doi: 10.3390/sym11010029
|
GAO Jie, DU Jinsong, and WANG Wei. Radar detection of fluctuating targets under heavy- tailed clutter using Track-before-detect[J]. Sensors, 2018, 18(7): 2241. doi: 10.3390/s18072241
|
LI Yuansheng, WEI Ping, GAO Lin, et al. Micro-doppler aided track-before-detect for UAV detection[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 9086–9089.
|
CAO Chenghu, ZHAO Yongbo, PANG Xiaojiao, et al. Sequential Monte Carlo Cardinalized probability hypothesized density filter based on Track-Before-Detect for fluctuating targets in heavy-tailed clutter[J]. Signal Processing, 2020, 169: 107367. doi: 10.1016/j.sigpro.2019.107367
|
HAN Yulan and HAN Chongzhao. Two measurement set partitioning algorithms for the extended target probability hypothesis density filter[J]. Sensors, 2019, 19(12): 2665. doi: 10.3390/s19122665
|
陈一梅. 基于随机有限集的杂波估计与多扩展目标跟踪问题研究[D]. [硕士论文], 杭州电子科技大学, 2019.
CHEN Yimei. Clutter estimation and multiple extended target tracking based on random finite set[D]. [Master dissertation], Hangzhou Dianzi University, 2019.
|
WANG Jinghe, YI Wei, KIRUBARAJAN T, et al. An efficient recursive multiframe track-before-detect algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 190–204. doi: 10.1109/TAES.2017.2741898
|
熊伟, 顾祥岐, 徐从安, 等. 多编队目标先后出现时的无先验信息跟踪方法[J]. 电子与信息学报, 2020, 42(7): 1619–1626. doi: 10.11999/JEIT190508
XIONG Wei, GU Xiangqi, XU Cong’an, et al. Tracking method without prior information when multi-group targets appear successively[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1619–1626. doi: 10.11999/JEIT190508
|
QIN Xiaoyu, TING Kaiming, ZHU Ye, et al. Nearest-neighbour-induced isolation similarity and its impact on density-based clustering[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 4755–4762.
|