Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Jianhui ZHAO, Bei ZHANG, Ning LI, Zhengwei GUO. Cooperative Inversion of Winter Wheat Covered Surface Soil Moisture Based on Sentinel-1/2 Remote Sensing Data[J]. Journal of Electronics & Information Technology, 2021, 43(3): 692-699. doi: 10.11999/JEIT200416
Citation: Jianhui ZHAO, Bei ZHANG, Ning LI, Zhengwei GUO. Cooperative Inversion of Winter Wheat Covered Surface Soil Moisture Based on Sentinel-1/2 Remote Sensing Data[J]. Journal of Electronics & Information Technology, 2021, 43(3): 692-699. doi: 10.11999/JEIT200416

Cooperative Inversion of Winter Wheat Covered Surface Soil Moisture Based on Sentinel-1/2 Remote Sensing Data

doi: 10.11999/JEIT200416
Funds:  The National Natural Science Foundation of China (61871175), The Plan of Science and Technology of Henan Province (182102210233, 192102210082), The Youth Talent Lifting Project of Henan Province (2019HYTP006), The College Key Research Project of Henan Province (19A420005)
  • Received Date: 2020-05-29
  • Rev Recd Date: 2020-12-06
  • Available Online: 2020-12-18
  • Publish Date: 2021-03-22
  • Winter wheat is one of the most important food crops in China. Monitoring the soil moisture over winter wheat covered surface can help to solve the problem of poor harvest of winter wheat and waste of agricultural water due to soil water supply. In order to reduce the influence of winter wheat on radar backscattering coefficient in the process of microwave remote sensing retrieval of soil moisture covered by winter wheat, based on the Synthetic Aperture Radar (SAR) data carried by Sentinel-1 and the MultiSpectral Imager (MSI) data carried by Sentinel-2, combined with the water cloud model, the collaborative inversion of soil moisture over winter wheat mulching surface is carried out. Firstly, based on the MSI data from Sentinel-2, a new vegetation index called Fusion Vegetation Index (FVI) is defined for inversion of winter wheat moisture. Secondly, a semi-empirical soil moisture inversion model based on active and passive remote sensing data is developed to correct the influence of winter wheat on radar backscatter coefficient. Finally, by taking a winter wheat field in Henan Province as the study area, the comparative experiments of soil moisture inversion are carried out under six combinations, which are composed of two vegetation indexes, Normalized Difference Water Index (NDWI) and FVI respectively, and three types of polarization data, VV, VH and VV/VH respectively. Through the experimental results, FVI shows a better performance than NDWI in reducing the influence of winter wheat on radar backscatter coefficient. Meanwhile, among the six inversion combinations, the one of FVI and VV/VH achieves the optimal inversion precision, with a determination coefficient of 0.7642, a Root Mean Square Error of 0.0209 cm3/cm3, and a Mean Absolute Error of 0.0174 cm3/cm3, demonstrating the application potential of the soil inversion model developed in this paper.
  • loading
  • 李震, 廖静娟. 合成孔径雷达地表参数反演模型与方法[M]. 北京: 科学出版社, 2011: 209–305.

    LI Zhen and LIAO Jingjuan. Model and Method for Inversion of Synthetic Surface Radar Surface Parameters[M]. Beijing: Science Press, 2011: 209–305.
    闵林, 王宁, 毋琳, 等. 基于多源雷达遥感技术的黄河径流反演研究[J]. 电子与信息学报, 2020, 42(7): 1590–1598. doi: 10.11999/JEIT190494

    MIN Lin, WANG Ning, WU Lin, et al. Inversion of Yellow River runoff based on multi-source radar remote sensing technology[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1590–1598. doi: 10.11999/JEIT190494
    杜兰, 魏迪, 李璐, 等. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783

    DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
    张祥, 陈报章, 赵慧, 等. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2): 338–345. doi: 10.11873/j.issn.1004-0323.2017.2.0338

    ZHANG Xiang, CHEN Baozhang, ZHAO Hui, et al. Soil moisture change detection over bare agricultural area by means of time-series Sentinel-1A SAR data[J]. Remote Sensing Technology and Application, 2017, 32(2): 338–345. doi: 10.11873/j.issn.1004-0323.2017.2.0338
    陈婷婷, 潘耀忠, 孙林. 基于多时相Sentinel-1SAR地表土壤水分反演的Alpha近似模型改进[J]. 土壤学报, 2019, 56(5): 1269–1278. doi: 10.11766/trxb201807270361

    CHEN Tingting, PAN Yaozhong, and SUN Lin. Modification of alpha approximation model based for retrieving soil moisture data based on multi-temporal sentinel-1 SAR[J]. Acta Pedologica Sinica, 2019, 56(5): 1269–1278. doi: 10.11766/trxb201807270361
    韩玲, 秦小宝, 陈鲁皖. 双极化SAR数据反演裸露地表土壤水分[J]. 测绘工程, 2018, 27(2): 7–12. doi: 10.19349/j.cnki.issn1006-7949.2018.02.002

    HAN Ling, QIN Xiaobao, and CHEN Luwan. Inversion of soil moisture on bare surface by dual polarization SAR data[J]. Engineering of Surveying and Mapping, 2018, 27(2): 7–12. doi: 10.19349/j.cnki.issn1006-7949.2018.02.002
    林利斌, 鲍艳松, 左泉, 等. 基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J]. 遥感技术与应用, 2018, 33(4): 750–758. doi: 10.11873/j.issn.1004-0323.2018.4.0750

    LIN Libin, BAO Yansong, ZUO Quan, et al. Soil moisture retrieval over vegetated areas based on sentinel-1 and FY-3C data[J]. Remote Sensing Technology and Application, 2018, 33(4): 750–758. doi: 10.11873/j.issn.1004-0323.2018.4.0750
    郭二旺, 郭乙霏, 罗蔚然, 等. 基于Landsat8和Sentinel-1A数据的焦作广利灌区夏玉米土壤墒情监测方法研究[J]. 中国农村水利水电, 2019(7): 22–25, 34. doi: 10.3969/j.issn.1007-2284.2019.07.005

    GUO Erwang, GUO Yifei, LUO Weiran, et al. Soil moisture retrieval of summer maize in the irrigation area based on sentinel-1A[J]. China Rural Water and Hydropower, 2019(7): 22–25, 34. doi: 10.3969/j.issn.1007-2284.2019.07.005
    郭交, 刘健, 宁纪锋, 等. 基于Sentinel多源数据的农田地表土壤水分反演模型构建与验证[J]. 农业工程学报, 2019, 35(14): 71–78. doi: 10.11975/j.issn.1002-6819.2019.14.009

    GUO Jiao, LIU Jian, NING Jifeng, et al. Construction and validation of soil moisture retrieval model in farmland based on Sentinel multi-source data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 71–78. doi: 10.11975/j.issn.1002-6819.2019.14.009
    PRÉVOT L, CHAMPION I, and GUYOT G. Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer[J]. Remote Sensing of Environment, 1993, 46(3): 331–339. doi: 10.1016/0034-4257(93)90053-Z
    TACONET O, BENALLEGUE M, VIDAL-MADJAR D, et al. Estimation of soil and crop parameters for wheat from airborne radar backscattering data in C and X bands[J]. Remote Sensing of Environment, 1994, 50(3): 287–294. doi: 10.1016/0034-4257(94)90078-7
    BAGHDADI N, EL HAJJ M, ZRIBI M, et al. Calibration of the water cloud model at C-band for winter crop fields and grasslands[J]. Remote Sensing, 2017, 9(9): 969. doi: 10.3390/rs9090969
    BAO Yansong, LIN Libin, WU Shanyu, et al. Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 72: 76–85. doi: 10.1016/j.jag.2018.05.026
    杜伟娜, 徐爱功, 宋耀鑫, 等. 新型SAR传感器一级地距产品绝对辐射定标方法[J]. 国土资源遥感, 2016, 28(4): 30–34. doi: 10.6046/gtzyyg.2016.04.05

    DU Weina, XU Aigong, SONG Yaoxin, et al. Absolute radiometric calibration of level-1 detected ground range products of new SAR sensors[J]. Remote Sensing for Land &Resources, 2016, 28(4): 30–34. doi: 10.6046/gtzyyg.2016.04.05
    MOHAN M M P, RAJITHA K, and VARMA M R R. Integration of soil moisture as an auxiliary parameter for the anchor pixel selection process in SEBAL using Landsat 8 and Sentinel-1A images[J]. International Journal of Remote Sensing, 2020, 41(3): 1214–1231. doi: 10.1080/01431161.2019.1658239
    MOREAU S, BOSSENO R, GU Xingfa, et al. Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR[J]. Remote Sensing of Environment, 2003, 85(4): 516–529. doi: 10.1016/s0034-4257(03)00053-1
    GAO Bocai. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257–266. doi: 10.1016/s0034-4257(96)00067-3
    SIBANDA M, MUTANGA O, and ROUGET M. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110: 55–65. doi: 10.1016/j.isprsjprs.2015.10.005
    KONG Jinling, YANG Jing, ZHEN Peipei, et al. A coupling model for soil moisture retrieval in sparse vegetation covered areas based on microwave and optical remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7162–7173. doi: 10.1109/tgrs.2018.2849009
    ATTEMA E P W and ULABY F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2): 357–364. doi: 10.1029/rs013i002p00357
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (1455) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return