| Citation: | Hui ZHAO, Wei WANG, Jinrong MO, Zhenjiang SUN, Tianqi ZHANG. Peak-to-Average Power Ratio Reduction Algorithm Based on Double Optimization in FBMC-OQAM System[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1742-1749. doi: 10.11999/JEIT200369 | 
 
	                | [1] | FARHANG-BOROUJENY B. OFDM versus filter bank multicarrier[J]. IEEE Signal Processing Magazine, 2011, 28(3): 92–112. doi:  10.1109/msp.2011.940267 | 
| [2] | 庞晓娇, 赵永波, 徐保庆, 等. 基于原子范数的MIMO雷达发射波形设计方法[J]. 电子与信息学报, 2019, 41(9): 2143–2150. doi:  10.11999/JEIT181107 PANG Xiaojiao, ZHAO Yongbo, XU Baoqing, et al. An atomic norm-based transmit waveform design method in MIMO radar[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2143–2150. doi:  10.11999/JEIT181107 | 
| [3] | JIANG Tao, NI Chunxing, QU Daiming, et al. Energy-efficient NC-OFDM/OQAM-based cognitive radio networks[J]. IEEE Communications Magazine, 2014, 52(7): 54–60. doi:  10.1109/MCOM.2014.6852083 | 
| [4] | NISSEL R, SCHWARZ S, and RUPP M. Filter bank multicarrier modulation schemes for future mobile communications[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1768–1782. doi:  10.1109/JSAC.2017.2710022 | 
| [5] | KIM J, PARK Y, WEON S, et al. A new filter-bank multicarrier system: The linearly processed FBMC system[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4888–4898. doi:  10.1109/TWC.2018.2832646 | 
| [6] | 庄陵, 关鹃, 马靖怡, 等. 一种基于结构优化的FIR滤波器舍入噪声性能改进方案[J]. 电子与信息学报, 2019, 41(4): 932–938. doi:  10.11999/JEIT180480 ZHUANG Ling, GUAN Juan, MA Jingyi, et al. An improvement project of roundoff noise performance of FIR filters based on structure optimization[J]. Journal of Electronics &Information Technology, 2019, 41(4): 932–938. doi:  10.11999/JEIT180480 | 
| [7] | SHAHEEN I A, ZEKRY A, NEWAGY F, et al. PAPR reduction of FBMC/OQAM systems based on combination of DST precoding and A-law nonlinear companding technique[C]. 2017 International Conference on Promising Electronic Technologies, Deir El-Balah, Palestine, 2017: 38–42. doi: 10.1109/ICPET.2017.13. | 
| [8] | CHOI K. Alamouti coding for DFT spreading-based low PAPR FBMC[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 926–941. doi:  10.1109/twc.2018.2886347 | 
| [9] | LU Shixian, QU Daiming, and HE Yejun. Sliding window tone reservation technique for the peak-to-average power ratio reduction of FBMC-OQAM signals[J]. IEEE Wireless Communications Letters, 2012, 1(4): 268–271. doi:  10.1109/wcl.2012.062512.120360 | 
| [10] | YANG Chaosan, LIU Rongke, ZHAO Ling, et al. Modified SLM scheme of FBMC signal in satellite communications[J]. IET Communications, 2019, 13(11): 1702–1708. doi:  10.1049/iet-com.2018.5101 | 
| [11] | QU Daiming, LU Shixian, and JIANG Tao. Multi-block joint optimization for the peak-to-average power ratio reduction of FBMC-OQAM signals[J]. IEEE Transactions on Signal Processing, 2013, 61(7): 1605–1613. doi:  10.1109/TSP.2013.2239991 | 
| [12] | YE Chen, LI Zijun, JIANG Tao, et al. PAPR reduction of OQAM-OFDM signals using segmental PTS scheme with low complexity[J]. IEEE Transactions on Broadcasting, 2014, 60(1): 141–147. doi:  10.1109/TBC.2013.2282732 | 
| [13] | MOON J H, NAM Y R, and KIM J H. PAPR reduction in the FBMC-OQAM system via segment-based optimization[J]. IEEE Access, 2018, 6: 4994–5002. doi:  10.1109/ACCESS.2018.2794366 | 
| [14] | NA Dongjun and CHOI K. Low PAPR FBMC[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 182–193. doi:  10.1109/TWC.2017.2764028 | 
| [15] | NISSEL R and RUPP M. Pruned DFT-spread FBMC: Low PAPR, low latency, high spectral efficiency[J]. IEEE Transactions on Communications, 2018, 66(10): 4811–4825. doi:  10.1109/tcomm.2018.2837130 | 
