Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Jiaqi CHEN, Xiangmei LIU, Ning LI, Yan ZHANG. A High-precision Water Segmentation Algorithm for SAR Image and its Application[J]. Journal of Electronics & Information Technology, 2021, 43(3): 700-707. doi: 10.11999/JEIT200366
Citation: Jiaqi CHEN, Xiangmei LIU, Ning LI, Yan ZHANG. A High-precision Water Segmentation Algorithm for SAR Image and its Application[J]. Journal of Electronics & Information Technology, 2021, 43(3): 700-707. doi: 10.11999/JEIT200366

A High-precision Water Segmentation Algorithm for SAR Image and its Application

doi: 10.11999/JEIT200366
Funds:  The National Natural Science Foundation of China (61771183, 61601437), The Fundamental Research Funds for the Central University (2016B07114), The Plan of Science and Technology of Henan Province (192102210082), The Youth Talent Lifting Project of Henan Province (2019HYTP006), China Postdoctoral Science Foundation (2013M541035)
  • Received Date: 2020-05-08
  • Rev Recd Date: 2020-12-05
  • Available Online: 2020-12-17
  • Publish Date: 2021-03-22
  • Water segmentation of Synthetic Aperture Radar (SAR) is of great significance in land hydrological monitoring, such as lakes and rivers. Water segmentation accuracy is influenced by the blurring of the boundary between land and water region because of the insufficient resolution of SAR image. Sentinel-1A SAR image is used to study the Duoqing Co in the Tibetan Plateau of China. This paper integrates the enhanced deep residual block, channel attention mechanism and sub-pixel convolution, an enhanced channel attention deep residual network is proposed based on sub-pixel to reconstruct the filtered SAR image, extract the water contour and analyze the accuracy. By comparing the reconstruction results of different super-resolution algorithms and the accuracy of water contour extraction, this algorithm, with great robustness, is obviously better than the traditional method in both reconstruction effect and extraction accuracy.
  • loading
  • 朱立平, 张国庆, 杨瑞敏, 等. 青藏高原最近40年湖泊变化的主要表现与发展趋势[J]. 中国科学院院刊, 2019, 34(11): 1254–1263. doi: 10.16418/j.issn.1000-3045.2019.11.008

    ZHU Liping, ZHANG Guoqing, YANG Ruimin, et al. Lake variations on Tibetan plateau of recent 40 years and future changing tendency[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1254–1263. doi: 10.16418/j.issn.1000-3045.2019.11.008
    SONG Kaishan, LIU Ge, WANG Qiang, et al. Quantification of lake clarity in China using Landsat OLI imagery data[J]. Remote Sensing of Environment, 2020, 243: 111800. doi: 10.1016/j.rse.2020.111800
    李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116

    LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics &Information Technology, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116
    GUO Yaru and ZHANG Jixian. A new 2D Otsu for water extraction from SAR image[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, XLⅡ-2/W7: 733–736. doi: 10.5194/isprs-archives-XLⅡ-2-W7-733-2017.
    杜兰, 魏迪, 李璐, 等. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783

    DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
    冷英, 刘忠玲, 张衡, 等. 一种改进的ACM算法及其在鄱阳湖水域监测中的应用[J]. 电子与信息学报, 2017, 39(5): 1064–1070. doi: 10.11999/JEIT160870

    LENG Ying, LIU Zhongling, ZHANG Heng, et al. Improved ACM algorithm for Poyang lake monitoring[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1064–1070. doi: 10.11999/JEIT160870
    KASS M, WITKIN A, and TERZOPOULOS D. Snakes: Active contour models[J]. International Journal of Computer Vision, 1988, 1(1): 321–332. doi: 10.1007/BF00133570
    LI Ning, WANG R, DENG Yunkai, et al. Waterline mapping and change detection of Tangjiashan dammed lake after Wenchuan earthquake from multitemporal high-resolution airborne SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3200–3209. doi: 10.1109/JSTARS.2014.2345417
    李宁, 牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法[J]. 雷达学报, 2020, 9(1): 174–184. doi: 10.12000/JR19096

    LI Ning and NIU Shilin. High-precision water segmentation from synthetic aperture radar images based on local super-resolution restoration technology[J]. Journal of Radars, 2020, 9(1): 174–184. doi: 10.12000/JR19096
    王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669

    WANG Gang, ZHOU Ruofei, and ZOU Yikun. Research on image optimization technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669
    TSAI R Y and HUANG T S. Multiframe image restoration and registration[J]. Advances in Computer Vision and Image Processing, 1984, 1(2): 317–339.
    HARDIE R C, BARNARD K J, and ARMSTRONG E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images[J]. IEEE Transactions on Image Processing, 1997, 6(12): 1621–1633. doi: 10.1109/83.650116
    KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. 2016 IEEE on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
    吴中海, 哈广浩, 赵根模, 等. 西藏亚东-谷露裂谷南段多庆错2016年4月异常干涸的构造成因[J]. 地球科学, 2018, 43(S2): 243–255. doi: 10.3799/dqkx.2018.204

    WU Zhonghai, HA Guanghao, ZHAO Genmo, et al. Tectonic analysis on abnormal dried up of Duoqing co lake of southern section of Yadong-Gulu rift in South Tibet during April, 2016[J]. Earth Science, 2018, 43(S2): 243–255. doi: 10.3799/dqkx.2018.204
    CHEN Jiaqi, WANG Qingwei, WANG Jian, et al. Change detection of water index in Danjiangkou reservoir using mixed log-normal distribution based active contour model[J]. IEEE Access, 2019, 7: 95430–95442. doi: 10.1109/ACCESS.2019.2929178
    DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281
    张金松, 邢孟道, 孙光才. 一种基于密集深度分离卷积的SAR图像水域分割算法[J]. 雷达学报, 2019, 8(3): 400–412. doi: 10.12000/JR19008

    ZHANG Jinsong, XING Mengdao, and SUN Guangcai. A water segmentation algorithm for SAR image based on dense depthwise separable convolution[J]. Journal of Radars, 2019, 8(3): 400–412. doi: 10.12000/JR19008
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (1403) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return