Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Bo HUANG, Jie ZHOU, Ge JIANG. High Resolution ISAR Imaging Algorithm Based on Robust Two-tier Group LASSO Alternating Direction Method of Multipliers[J]. Journal of Electronics & Information Technology, 2021, 43(3): 674-682. doi: 10.11999/JEIT200338
Citation: Bo HUANG, Jie ZHOU, Ge JIANG. High Resolution ISAR Imaging Algorithm Based on Robust Two-tier Group LASSO Alternating Direction Method of Multipliers[J]. Journal of Electronics & Information Technology, 2021, 43(3): 674-682. doi: 10.11999/JEIT200338

High Resolution ISAR Imaging Algorithm Based on Robust Two-tier Group LASSO Alternating Direction Method of Multipliers

doi: 10.11999/JEIT200338
Funds:  Pre-research Fundation (61406190101)
  • Received Date: 2020-04-30
  • Rev Recd Date: 2020-09-11
  • Available Online: 2020-11-17
  • Publish Date: 2021-03-22
  • The classical sparse recovery of Inverse Synthetic Aperture Radar (ISAR) imagery obtains the ISAR image by solving the constrained problem of ${\ell _{1}}$ norm regularization. However, this manner may remove the scattering points in low amplitude, and accordingly, lose the structural features in weak scattering. To this end, a novel and Robust Two-tier Group LASSO-Alternating Direction Method of Multipliers (RTGL-ADMM) is proposed in this paper, which is capable of enhancing block sparsity structures of the targets-of-interests. Based on the sparse prior of the target, the proposed algorithm further introduces the prior knowledge of spatial continuity structure of the target’s scatters, and the ${\ell _{1}}/{\ell _{\rm{F}}}$ mixed norm is accordingly used to formulate the prior. Next, the non-smooth ${\ell _{1}}/{\ell _{\rm{F}}}$ mixed norm penalty term is presented under the ADMM framework, where the scatters in both range and azimuthal directions are grouped and overlapped to enhance the block sparsity outer the groups. According to the theory of ADMM, the proximal mapping of the ${\ell _{1}}/{\ell _{\rm{F}}}$ mixed norm is solved and dually iterated to achieve a robust and efficient solution. The proposed algorithm proceeds in the "Decomposition-Coordination" manner, which guarantees superior convergence. In this way, the sparse imaging of ISAR data is combined with the enhancement of structural features. The experiment verifies the adoption of ISAR simulation complex data and YAK-42 measured data, and conducts qualitative analysis against RTGL-ADMM. Then the phase transition curve is used to analyze quantitatively the imaging capability of RTGL-ADMM under different parameters, thus verifying the robustness and superiority of the proposed algorithm in the application of ISAR high-resolution imaging.
  • loading
  • 田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术综述[J]. 雷达学报, 2020, 9(5): 765–802. doi: 10.12000/JR20060

    TIAN Biao, LIU Yang, HU Pengjiang, et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9(5): 765–802. doi: 10.12000/JR20060
    王天. 机载雷达对海面目标SAR/ISAR成像方法[D]. [硕士论文], 电子科技大学, 2019.

    WANG Tian. The hybrid SAR/ISAR imaging of sea-surface target by airborne radar[D]. [Master dissertation], University of Electronic Science and Technology of China, 2019.
    朱晓秀, 胡文华, 郭宝锋. 基于压缩感知的ISAR成像技术综述[J]. 飞航导弹, 2018(3): 84–89. doi: 10.16338/j.issn.1009-1319.2018.03.20

    ZHU Xiaoxiu, HU Wenhua, and GUO Baofeng. A review of ISAR imaging techniques based on compressed sensing[J]. Aerodynamic Missile Journal, 2018(3): 84–89. doi: 10.16338/j.issn.1009-1319.2018.03.20
    苏潇然. 基于稀疏信号处理的ISAR运动补偿及成像技术[D]. [硕士论文], 中国科学技术大学, 2019.

    SU Xiaoran. ISAR motion compensation and imaging technologies based on sparse signal processing[D]. [Master dissertation], University of Science and Technology of China, 2019.
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    王伟, 张斌, 李欣. 基于混合匹配追踪算法的MIMO雷达稀疏成像方法[J]. 电子与信息学报, 2016, 38(10): 2415–2422. doi: 10.11999/JEIT151453

    WANG Wei, ZHANG Bin, and LI Xin. An imaging method for MIMO radar based on hybrid matching pursuit[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2415–2422. doi: 10.11999/JEIT151453
    李瑞, 张群, 苏令华, 等. 基于稀疏贝叶斯学习的双基雷达关联成像[J]. 电子与信息学报, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933

    LI Run, ZHANG Qun, SU Linghua, et al. Bistatic radar coincidence imaging based on sparse Bayesian learning[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    杨磊, 李埔丞, 李慧娟, 等. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173

    YANG Lei, LI Pucheng, LI Huijuan, et al. Robust and efficient sparse-feature Enhancement for generalized SAR imagery[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173
    YUAN Ming and LIN Yi. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 2006, 68(1): 49–67. doi: 10.1111/j.1467-9868.2005.00532.x
    YANG Lei, LI Pucheng, ZHANG Su, et al. Cooperative multitask learning for sparsity-driven SAR imagery and nonsystematic error autocalibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5132–5147. doi: 10.1109/TGRS.2020.2972972
    TIBSHIRANI R. Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society: Series B (Methodological) , 1996, 58(1): 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x
    DONOHO D L, MALEKI A, and MONTANARI A. The noise-sensitivity phase transition in compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6920–6941. doi: 10.1109/TIT.2011.2165823
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1175) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return