Citation: | Lun TANG, Ziyu LI, Lingjin GUAN, Qianbin CHEN. Energy Efficiency Optimization Algorithm Based On PD-NOMA Under Heterogeneous Cloud Radio Access Networks[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1706-1714. doi: 10.11999/JEIT200327 |
[1] |
张广驰, 曾志超, 崔苗, 等. 无线供电混合多址接入网络的资源分配[J]. 电子与信息学报, 2018, 40(12): 3013–3019. doi: 10.11999/JEIT180219
ZHANG Guangchi, ZENG Zhichao, CUI Miao, et al. Resource allocation for wireless powered hybrid multiple access networks[J]. Journal of Electronics &Information Technology, 2018, 40(12): 3013–3019. doi: 10.11999/JEIT180219
|
[2] |
MOKDAD A, AZMI P, MOKARI N, et al. Cross-layer energy efficient resource allocation in PD-NOMA based H-CRANs: Implementation via GPU[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1246–1259. doi: 10.1109/TMC.2018.2860985
|
[3] |
ZHANG Yizhong, WU Gang, DENG Lijun, et al. Arrival rate-based average energy-efficient resource allocation for 5G heterogeneous cloud RAN[J]. IEEE Access, 2019, 7: 136332–136342. doi: 10.1109/ACCESS.2019.2939348
|
[4] |
陈前斌, 管令进, 李子煜, 等. 基于深度强化学习的异构云无线接入网自适应无线资源分配算法[J]. 电子与信息学报, 2020, 42(6): 1468–1477. doi: 10.11999/JEIT190511
CHEN Qianbin, GUAN Lingjin, LI Ziyu, et al. Deep reinforcement learning-based adaptive wireless resource allocation algorithm for heterogeneous cloud wireless access network[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1468–1477. doi: 10.11999/JEIT190511
|
[5] |
PENG Mugen, LI Yong, ZHAO Zhongyuan, et al. System architecture and key technologies for 5G heterogeneous cloud radio access networks[J]. IEEE Network, 2015, 29(2): 6–14. doi: 10.1109/MNET.2015.7064897
|
[6] |
HUNG S, HSU H, CHENG S, et al. Delay guaranteed network association for mobile machines in heterogeneous cloud radio access network[J]. IEEE Transactions on Mobile Computing, 2018, 17(12): 2744–2760. doi: 10.1109/TMC.2018.2815702
|
[7] |
TAN Zhongwei, YANG Chuanchuan, and WANG Ziyu. Energy evaluation for cloud RAN employing TDM-PON as front-haul based on a new network traffic modeling[J]. Journal of Lightwave Technology, 2017, 35(13): 2669–2677. doi: 10.1109/JLT.2016.2613095
|
[8] |
DHAINI A R, HO P H, SHEN Gangxiang, et al. Energy efficiency in TDMA-based next-generation passive optical access networks[J]. IEEE/ACM Transactions on Networking, 2014, 22(3): 850–863. doi: 10.1109/TNET.2013.2259596
|
[9] |
WANG Kaiwei, ZHOU Wuyang, and MAO Shiwen. Energy efficient joint resource scheduling for delay-aware traffic in cloud-RAN[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7841793.
|
[10] |
SABELLA D, DE DOMENICO A, KATRANARAS E, et al. Energy efficiency benefits of RAN-as-a-service concept for a cloud-based 5G mobile network infrastructure[J]. IEEE Access, 2014, 2: 1586–1597. doi: 10.1109/ACCESS.2014.2381215
|
[11] |
NEELY M J. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. Morgan & Claypool, 2010: 1–211. doi: 10.2200/S00271ED1V01Y201006CNT007.
|
[12] |
NGUYEN K K, DUONG T Q, VIEN N A, et al. Non-cooperative energy efficient power allocation game in D2D communication: A multi-agent deep reinforcement learning approach[J]. IEEE Access, 2019, 7: 100480–100490. doi: 10.1109/ACCESS.2019.2930115
|
[13] |
ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26–38. doi: 10.1109/MSP.2017.2743240
|
[14] |
NASIR Y S and GUO Dongning. Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2239–2250. doi: 10.1109/JSAC.2019.2933973
|