Advanced Search
Volume 43 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Lei YANG, Yabo XIA, Xinyao MAO, Xianhua LIAO, Cheng FANG, Jie GAO. Sparse ISAR Imaging Algorithm Based on Bayesian-Lasso[J]. Journal of Electronics & Information Technology, 2021, 43(3): 623-631. doi: 10.11999/JEIT200292
Citation: Lei YANG, Yabo XIA, Xinyao MAO, Xianhua LIAO, Cheng FANG, Jie GAO. Sparse ISAR Imaging Algorithm Based on Bayesian-Lasso[J]. Journal of Electronics & Information Technology, 2021, 43(3): 623-631. doi: 10.11999/JEIT200292

Sparse ISAR Imaging Algorithm Based on Bayesian-Lasso

doi: 10.11999/JEIT200292
Funds:  The Fundamental Research Funds for Central Universities of Ministry of Education of China (3122018C005, 3122014C009), The National Natural Science Foundation of China (61601470), The Natural Science Foundation of Tianjin (16JCYBJC41200)
  • Received Date: 2020-04-21
  • Rev Recd Date: 2020-08-08
  • Available Online: 2020-08-13
  • Publish Date: 2021-03-22
  • Due to the echoes of the Inverse Synthetic Aperture Radar (ISAR) imagery are spatially sparse, the conventional convex optimization for the sparse image recovery involves tedious adjustment for the regularization parameter, which seriously limits the accuracy and the convenience of the image formation. In this paper, the unconstrained least absolute shrinkage and selection operator (Lasso) model is introduced for the $ {\ell _1}$ regularization problem, and it is equivalently transformed into sparse Bayesian inference under the Laplacian prior. More specifically, a hierarchical Bayesian model is established. In such cases, multiple hyper-parameters with multi-level conditional probability distribution are introduced. Due to the equivalent transformation, the manual choice of the regularization parameter can be replaced by automatic determination under the hierarchical Bayesian model, which provides convenience of fully conditional probability adjustment. Considering the high dimensions of sparse image responses and multiple hyper-parameters, the Gibbs sampler is adopted, where the Bayesian posterior of the ISAR image and high-dimensional hyper-parameters can be solved with fully confidence. Based on the research in this paper, all parameters can be attained by data, therefore tedious parameter adjustment can be avoided, and the automation level of the algorithm can be improved. The effectiveness and superiority of this method are proved by both simulated and measured data experiments.
  • loading
  • 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005.
    杨利超, 邢孟道, 孙广才, 等. 一种微波光子雷达ISAR成像新方法[J]. 电子与信息学报, 2019, 41(6): 1271–1279. doi: 10.11999/JEIT180661

    YANG Lichao, XING Mengdao, SUN Guangcai, et al. A novel ISAR imaging algorithm for microwave photonics radar[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1271–1279. doi: 10.11999/JEIT180661
    王天云, 陆新飞, 孙麟, 等. 基于贝叶斯压缩感知的ISAR自聚焦成像[J]. 电子与信息学报, 2015, 37(11): 2719–2726. doi: 10.11999/JEIT150235

    WANG Tianyun, LU Xinfei, SUN Lin, et al. An autofocus imaging method for ISAR based on Bayesian compressive sensing[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2719–2726. doi: 10.11999/JEIT150235
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669

    WANG Gang, ZHOU Ruofei, and ZOU Yikun. Research on image optimization technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669
    TELLO M, LOPEZ-DEKKER P, and MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285–4295. doi: 10.1109/TGRS.2010.2051231
    YANG Lei, ZHAO Lifan, ZHOU Song, et al. Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric bayesian learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4): 1443–1454. doi: 10.1109/jstars.2016.2611005
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    吕杰勤. 基于压缩感知的ISAR成像算法研究[D]. [硕士论文], 哈尔滨工业大学, 2014.

    LÜ Jieqin. Study on algorithm of inverse synthetic radar imaging based on compressive sensing[D]. [Master dissertation], Harbin Institute of Technology, 2014.
    WONG W K and ZHOU Julie. CVX-based algorithms for constructing various optimal regression designs[J]. Canadian Journal of Statistics, 2019, 47(3): 374–391. doi: 10.1002/cjs.11499
    WANG Xiangrong, ELIAS A, and AMIN M G. Thinned array beampattern synthesis by iterative soft-thresholding-based optimization algorithms[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6102–6113. doi: 10.1109/TAP.2014.2364048
    杨磊, 李埔丞, 李慧娟, 等. 稳健高效通用SAR图像稀疏特征增强算法[J]. 电子与信息学报, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173

    YANG Lei, LI Pucheng, LI Huijuan, et al. Robust and efficient sparse-feature Enhancementfor generalized SAR imagery[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2826–2835. doi: 10.11999/JEIT190173
    李瑞, 张群, 苏令华, 等. 基于稀疏贝叶斯学习的双基雷达关联成像[J]. 电子与信息学报, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933

    LI Rui, ZHANG Qun, SU Linghua, et al. Bistatic radar coincidence imaging based on sparse bayesian learning[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933
    ZHAO Lifan, WANG Lu, BI Guoan, et al. An autofocus technique for high-resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392–6403. doi: 10.1109/TGRS.2013.2296497
    YANG Lei, ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254–2267. doi: 10.1109/TGRS.2015.2498158
    WANG Lu, ZHAO Lifan, BI Guoan, et al. Enhanced ISAR imaging by exploiting the continuity of the target scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5736–5750. doi: 10.1109/TGRS.2013.2292074
    陈倩倩, 邢孟道, 李浩林, 等. 一种适用于低信噪比短CPI的ISAR横向定标算法[J]. 西安电子科技大学学报, 2014, 41(6): 12–17, 64. doi: 10.3969/j.issn.1001-2400.2014.0603

    CHEN Qianqian, XING Mengdao, LI Haolin, et al. Cross-range scaling for ISAR imaging within short CPI and low SNR[J]. Journal of Xidian University, 2014, 41(6): 12–17, 64. doi: 10.3969/j.issn.1001-2400.2014.0603
    侯丽丽, 郑明洁, 宋红军, 等. 多通道高分辨率宽测绘带SAR系统杂波抑制技术研究[J]. 电子与信息学报, 2016, 38(3): 635–642. doi: 10.11999/JEIT150659

    HOU Lili, ZHENG Mingjie, SONG Hongjun, et al. Research on clutter suppression for multichannel High-resolution wide-swath SAR system[J]. Journal of Electronics &Information Technology, 2016, 38(3): 635–642. doi: 10.11999/JEIT150659
    XU Gang, GAO Yandong, LI Jinwei, et al. InSAR phase denoising: A review of current technologies and future directions[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2): 64–82. doi: 10.1109/MGRS.2019.2955120
    张群英, 江兆凤, 李超, 等. 太赫兹合成孔径雷达成像运动补偿算法[J]. 电子与信息学报, 2017, 39(1): 129–137. doi: 10.11999/JEIT160201

    ZHANG Qunying, JIANG Zhaofeng, LI Chao, et al. Motion compensation imaging algorithm of TeraHertz synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2017, 39(1): 129–137. doi: 10.11999/JEIT160201
    YANG Lei, LI Pucheng, ZHANG Su, et al. Cooperative multitask learning for sparsity-driven SAR imagery and nonsystematic error autocalibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5132–5147. doi: 10.1109/TGRS.2020.2972972
    YANG Lei, BI Guoan, XING Mengdao, et al. Airborne SAR moving target signatures and imagery based on LVD[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 5958–5971. doi: 10.1109/TGRS.2015.2429678
    DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/JPROC.2010.2045630
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (2461) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return