Advanced Search
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Yun LIU, Panpan XUE, Hui LI, Chuanxu WANG. A Review of Action Recognition Using Joints Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1789-1802. doi: 10.11999/JEIT200267
Citation: Yun LIU, Panpan XUE, Hui LI, Chuanxu WANG. A Review of Action Recognition Using Joints Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1789-1802. doi: 10.11999/JEIT200267

A Review of Action Recognition Using Joints Based on Deep Learning

doi: 10.11999/JEIT200267
Funds:  The National Natural Science Foundation of China (61702295, 61472196)
  • Received Date: 2020-04-14
  • Rev Recd Date: 2020-12-30
  • Available Online: 2021-01-11
  • Publish Date: 2021-06-18
  • Action recognition using joints has attracted the attention of scholars at home and abroad because it is not easily affected by appearance and can better avoid the impact of noise. However, there are few systematic reviews in this field. In this paper, the methods of action recognition using joints based on deep learning in recent years are summarized. According to the different subjects of the network, it is divided into Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), graph convolution network and hybrid network. The representation of joint point data that convolution neural network, recurrent neural network and graph convolution network are good at is pseudo image, vector sequence and topological graph. This paper summarizes the current data sets of action recognition using joints at home and abroad, and discusses the challenges and future research directions of behavior recognition using joints. Under the premise of high precision, rapid action recognition and practicality still need to be further promoted.
  • loading
  • [1]
    吴培良, 杨霄, 毛秉毅, 等. 一种视角无关的时空关联深度视频行为识别方法[J]. 电子与信息学报, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477

    WU Peiliang, YANG Xiao, MAO Bingyi, et al. A perspective-independent method for behavior recognition in depth video via temporal-spatial correlating[J]. Journal of Electronics &Information Technology, 2019, 41(4): 904–910. doi: 10.11999/JEIT180477
    [2]
    朱煜, 赵江坤, 王逸宁, 等. 基于深度学习的人体行为识别算法综述[J]. 自动化学报, 2016, 42(6): 848–857. doi: 10.16383/j.aas.2016.c150710

    ZHU Yu, ZHAO Jiangkun, WANG Yining, et al. A review of human action recognition based on deep learning[J]. Acta Automatica Sinica, 2016, 42(6): 848–857. doi: 10.16383/j.aas.2016.c150710
    [3]
    罗会兰, 王婵娟, 卢飞. 视频行为识别综述[J]. 通信学报, 2018, 39(6): 169–180. doi: 10.11959/j.issn.1000-436x.2018107

    LUO Huilan, WANG Chanjuan, and LU Fei. Survey of video behavior recognition[J]. Journal on Communications, 2018, 39(6): 169–180. doi: 10.11959/j.issn.1000-436x.2018107
    [4]
    张会珍, 刘云麟, 任伟建, 等. 人体行为识别特征提取方法综述[J]. 吉林大学学报: 信息科学版, 2020, 38(3): 360–370.

    ZHANG Huizhen, LIU Yunlin, REN Weijian, et al. Human behavior recognition feature extraction method: A survey[J]. Journal of Jilin University:Information Science Edition, 2020, 38(3): 360–370.
    [5]
    ZHU Fan, SHAO Ling, XIE Jin, et al. From handcrafted to learned representations for human action recognition: A survey[J]. Image and Vision Computing, 2016, 55(2): 42–52. doi: 10.1016/j.imavis.2016.06.007
    [6]
    ZHANG Zhengyou. Microsoft kinect sensor and its effect[J]. IEEE Multimedia, 2012, 19(2): 4–10. doi: 10.1109/MMUL.2012.24
    [7]
    YAN Yichao, XU Jingwei, NI Bingbing, et al. Skeleton-aided articulated motion generation[C]. The 25th ACM International Conference on Multimedia, Mountain View, USA, 2017: 199–207. doi: 10.1145/3123266.3123277.
    [8]
    HAN Fei, REILY B, HOFF W, et al. Space-time representation of people based on 3D skeletal data: A review[J]. Computer Vision and Image Understanding, 2017, 158: 85–105. doi: 10.1016/j.cviu.2017.01.011
    [9]
    XIA Lu, CHEN C C, and AGGARWAL J K. View invariant human action recognition using histograms of 3D joints[C]. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, USA, 2012: 20–27.
    [10]
    WENG Junwu, WENG Chaoqun, and YUAN Junsong. Spatio-temporal Naive-Bayes nearest-neighbor (ST-NBNN) for skeleton-based action recognition[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Tianjin, China, 2017: 4171–4180.
    [11]
    LI Bo, DAI Yuchao, CHENG Xuelian, et al. Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep CNN[C]. 2017 IEEE International Conference on Multimedia & Expo Workshops, Hong Kong, China, 2017: 4171–4180. doi: 10.1109/ICMEW.2017.8026282.
    [12]
    KIM T S and REITER A. Interpretable 3D human action analysis with temporal convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1623–1631. dio: 10.1109/CVPRW. 2017.207.
    [13]
    LI Chao, ZHONG Qiaoyong, XIE Di, et al. Skeleton-based action recognition with convolutional neural networks[C]. 2017 IEEE International Conference on Multimedia & Expo Workshops, Hong Kong, China, 2017: 597–600. doi: 10.1109/ICMEW.2017.8026285.
    [14]
    LIU Mengyuan, LIU Hong, and CHEN Chen. Enhanced skeleton visualization for view invariant human action recognition[J]. Pattern Recognition, 2017, 68: 346–362. doi: 10.1016/j.patcog.2017.02.030
    [15]
    KE Qiuhong, AN Senjian, BENNAMOUN M, et al. SkeletonNet: Mining deep part features for 3-D action recognition[J]. IEEE Signal Processing Letters, 2017, 24(6): 731–735. doi: 10.1109/LSP.2017.2690339
    [16]
    KE Qiuhong, BENNAMOUN M, AN Senjian, et al. A new representation of skeleton sequences for 3D action recognition[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3288–3297.
    [17]
    LE T M, INOUE N, and SHINODA K. A fine-to-coarse convolutional neural network for 3D human action recognition[J]. arXiv preprint arXiv: 1805.11790, 2018.
    [18]
    LI Chao, ZHONG Qiaoyong, XIE Di, et al. Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation[J]. arXiv preprint arXiv: 1804.06055, 2018.
    [19]
    刘庭煜, 陆增, 孙毅锋, 等. 基于三维深度卷积神经网络的车间生产行为识别[J]. 计算机集成制造系统, 2020, 26(8): 2143–2156.

    LIU Tingyu, LU Zeng, SUN Yifeng, et al. Working activity recognition approach based on 3D deep convolutional neural network[J]. Computer Integrated Manufacturing Systems, 2020, 26(8): 2143–2156.
    [20]
    姬晓飞, 秦琳琳, 王扬扬. 基于RGB和关节点数据融合模型的双人交互行为识别[J]. 计算机应用, 2019, 39(11): 3349–3354. doi: 772/j.issn.1001-9081.2019040633

    JI Xiaofei, QIN Linlin, and WANG Yangyang. Human interaction recognition based on RGB and skeleton data fusion model[J]. Journal of Computer Applications, 2019, 39(11): 3349–3354. doi: 772/j.issn.1001-9081.2019040633
    [21]
    YAN An, WANG Yali, LI Zhifeng, et al. PA3D: Pose-action 3D machine for video recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7922–7931. doi: 10.1109/CVPR.2019.00811.
    [22]
    CAETANO C, BRÉMOND F, and SCHWARTZ W R. Skeleton image representation for 3D action recognition based on tree structure and reference joints[C]. The 32nd SIBGRAPI Conference on Graphics, Patterns and Images, Rio de Janeiro, Brazil, 2019: 16–23.
    [23]
    CAETANO C, SENA J, BRÉMOND F, et al. SkeleMotion: A new representation of skeleton joint sequences based on motion information for 3D action recognition[C]. The 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, Taipei, China, 2019: 1–8. doi: 10.1109/AVSS.2019.8909840.
    [24]
    LI Yanshan, XIA Rongjie, LIU Xing, et al. Learning shape-motion representations from geometric algebra spatio-temporal model for skeleton-based action recognition[C]. 2019 IEEE International Conference on Multimedia and Expo, Shanghai, China, 2019: 1066–1071. doi: 10.1109/ICME.2019.00187.
    [25]
    YANG Fan, WU Yang, SAKTI S, et al. Make skeleton-based action recognition model smaller, faster and better[C]. The ACM Multimedia Asia, Beijing, China, 2019: 1–6. doi: 10.1145/3338533.3366569.
    [26]
    SHAHROUDY A, LIU Jun, NG T T, et al. NTU RGB+D: A large scale dataset for 3D human activity analysis[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1010–1019. doi: 10.1109/CVPR.2016.115.
    [27]
    LIU Jun, SHAHROUDY A, XU Dong, et al. Spatio-temporal LSTM with trust gates for 3D human action recognition[C]. The European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 816–833. doi: 10.1007/978-3-319-46487-9_50.
    [28]
    LIU Jun, SHAHROUDY A, XU Dong, et al. Skeleton-based action recognition using spatio-temporal LSTM network with trust gates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(12): 3007–3021. doi: 10.1109/TPAMI.2017.2771306
    [29]
    LIU Jun, WANG Gang, HU Ping, et al. Global context-aware attention LSTM networks for 3D action recognition[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1647–1656. doi: 10.1109/CVPR.2017.391.
    [30]
    LIU Jun, WANG Gang, DUAN Lingyun, et al. Skeleton-based human action recognition with global context-aware attention LSTM networks[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1586–1599.
    [31]
    ZHENG Wu, LI Lin, ZHANG Zhaoxiang, et al. Relational network for skeleton-based action recognition[C]. 2019 IEEE International Conference on Multimedia and Expo, Shanghai, China, 2019: 826–831.
    [32]
    LI Shuai, LI Wanqing, COOK C, et al. Independently recurrent neural network (IndRNN): Building a longer and deeper RNN[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5457–5466. doi: 10.1109/CVPR.2018.00572.
    [33]
    王佳铖, 鲍劲松, 刘天元, 等. 基于工件注意力的车间作业行为在线识别方法[J/OL]. 计算机集成制造系统, 2020: 1–13. http://kns.cnki.net/kcms/detail/11.5946.TP.20200623.1501.034.html.

    WANG Jiacheng, BAO Jinsong, LIU Tianyuan, et al. Online method for worker operation recognition based on the attention of workpiece[J/OL]. Computer Integrated Manufacturing Systems, 2020: 1–13. http://kns.cnki.net/kcms/detail/11.5946.TP.20200623.1501.034.html.
    [34]
    YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[J]. arXiv preprint arXiv: 1801.07455, 2018.
    [35]
    SHI Lei, ZHANG Yifan, CHENG Jia, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 12026–12035.
    [36]
    LI M, CHEN Siheng, CHEN Xu, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3595–3603.
    [37]
    GAO Xiang, HU Wei, TANG Jiaxiang, et al. Optimized skeleton-based action recognition via sparsified graph regression[C]. The 27th ACM International Conference on Multimedia, New York, USA, 2019: 601–610.
    [38]
    LI Chaolong, CUI Zhen, ZHENG Wenming, et al. Spatio-temporal graph convolution for skeleton based action recognition[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 247–254.
    [39]
    TANG Yansong, TIAN Yi, LU Jiwen, et al. Deep progressive reinforcement learning for skeleton-based action recognition[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5323–5332.
    [40]
    SONG Yifan, ZHANG Zhang, and WANG Liang. Richly activated graph convolutional network for action recognition with incomplete skeletons[C]. 2019 IEEE International Conference on Image Processing, Taipei, China, 2019: 1–5. doi: 10.1109/ICIP.2019.8802917.
    [41]
    PENG Wei, HONG Xiaopeng, CHEN Haoyu, et al. Learning graph convolutional network for skeleton-based human action recognition by neural searching[J]. arXiv preprint arXiv: 1911.04131, 2019.
    [42]
    WU Cong, WU Xiaojun, and KITTLER J. Spatial residual layer and dense connection block enhanced spatial temporal graph convolutional network for skeleton-based action recognition[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, Korea, 2019: 1–5.
    [43]
    SHI Lei, ZHANG Yifan, CHENG Jian, et al. Skeleton-based action recognition with directed graph neural networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7912–7921.
    [44]
    LI Maosen, CHEN Siheng, CHEN Xu, et al. Symbiotic graph neural networks for 3D skeleton-based human action recognition and motion prediction[J]. arXiv preprint arXiv: 1910.02212, 2019.
    [45]
    YANG Hongye, GU Yuzhang, ZHU Jianchao, et al. PGCN-TCA: Pseudo graph convolutional network with temporal and channel-wise attention for skeleton-based action recognition[J]. IEEE Access, 2020, 8: 10040–10047. doi: 10.1109/ACCESS.2020.2964115
    [46]
    WU Felix, ZHANG Tianyi, DE SOUZA JR A H, et al. Simplifying graph convolutional networks[J]. arXiv preprint arXiv: 1902.07153, 2019.
    [47]
    CHEN Jie, MA Tengfei, and XIAO Cao. FastGCN: Fast learning with graph convolutional networks via importance sampling[J]. arXiv preprint arXiv: 1801.10247, 2018.
    [48]
    ZHANG Pengfei, LAN Cuiling, XING Junliang, et al. View adaptive neural networks for high performance skeleton-based human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1963–1978. doi: 10.1109/TPAMI.2019.2896631
    [49]
    HU Guyue, CUI Bo, and YU Shan. Skeleton-based action recognition with synchronous local and non-local spatio-temporal learning and frequency attention[C]. 2019 IEEE International Conference on Multimedia and Expo, Shanghai, China, 2019: 1216–1221.
    [50]
    SI Chenyang, JING Ya, WANG Wei, et al. Skeleton-based action recognition with spatial reasoning and temporal stack learning[C]. The European Conference on Computer Vision, Munich, Germany, 2018: 103–118.
    [51]
    SI Chenyang, CHEN Wentao, WANG Wei, et al. An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1227–1236. doi: 10.1109/CVPR.2019.00132.
    [52]
    GAO Jialin, HE Tong, ZHOU Xi, et al. Focusing and diffusion: Bidirectional attentive graph convolutional networks for skeleton-based action recognition[J]. arXiv preprint arXiv: 1912.11521, 2019.
    [53]
    ZHANG Pengfei, LAN Cuiling, ZENG Wenjun, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020. doi: 10.1109/CVPR42600.2020.00119.
    [54]
    XIE Chunyu, LI Ce, ZHANG Baochang, et al. Memory attention networks for skeleton-based action recognition[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018.
    [55]
    WENG Junwu, LIU Mengyuan, JIANG Xudong, et al. Deformable pose traversal convolution for 3D action and gesture recognition[C]. The European Conference on Computer Vision, Munich, Germany, 2018: 768–775. doi: 10.1007/978-3-030-01234-2_9.
    [56]
    WANG Jiang, LIU Zicheng, WU Ying, et al. Mining actionlet ensemble for action recognition with depth cameras[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1290–1297. doi: 10.1109/CVPR.2012.6247813.
    [57]
    YUN K, HONORIO J, CHATTOPADHYAY D, et al. Two-person interaction detection using body-pose features and multiple instance learning[C]. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, USA, 2012: 28–35. doi: 10.1109/CVPRW.2012.6239234.
    [58]
    OREIFEJ O and LIU Zicheng. HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences[C]. 2013 IEEE conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 716–723. doi: 10.1109/CVPR.2013.98.
    [59]
    SEIDENARI L, VARANO V, BERRETTI S, et al. Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, USA, 2013: 479–485.
    [60]
    WEI Ping, ZHAO Yibiao, ZHENG Nanning, et al. Modeling 4D human-object interactions for event and object recognition[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 3272–3279.
    [61]
    YU Gang, LIU Zicheng, and YUAN Junsong. Discriminative orderlet mining for real-time recognition of human-object interaction[C]. The Asian Conference on Computer Vision, Singapore, 2014: 50–65. doi: 10.1007/978-3-319-16814-2_4.
    [62]
    WANG Jiang, NIE Xiaohan, XIA Yin, et al. Cross-view action modeling, learning, and recognition[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2649–2656. doi: 10.1109/CVPR.2014.339.
    [63]
    RAHMANI H, MAHMOOD A, HUYNH D Q, et al. HOPC: Histogram of oriented principal components of 3D pointclouds for action recognition[C]. The European Conference on Computer Vision, Zurich, Switzerland, 2014: 742–757. doi: 10.1007/978-3-319-10605-2_48.
    [64]
    CHEN Chen, JAFARI R, and KEHTARNAVAZ N. UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor[C]. 2015 IEEE International Conference on Image Processing, Quebec, Canada, 2015: 168–172.
    [65]
    HU Jianfang, ZHENG Weishi, LAI Jianhuang, et al. Jointly learning heterogeneous features for RGB-D activity recognition[C]. 2015 IEEE conference on Computer Vision and Pattern Recognition, Boston, America, 2015: 5344–5352.
    [66]
    RAHMANI H, MAHMOOD A, HUYNH D, et al. Histogram of oriented principal components for cross-view action recognition[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2016, 38(12): 2430–2443. doi: 10.1109/TPAMI.2016.2533389
    [67]
    XU Ning, LIU Anan, NIE Weizhi, et al. Multi-modal & multi-view & interactive benchmark dataset for human action recognition[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 1195–1198.
    [68]
    KAY W, CARREIRA J, SIMONYAN K, et al. The kinetics human action video dataset[J]. arXiv preprint arXiv: 1705.06950, 2017.
    [69]
    LIU Jun, SHAHROUDY A, PEREZ M, et al. NTU RGB+D 120: A large-scale benchmark for 3D human activity understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2684–2701. doi: 10.1109/TPAMI.2019.2916873
    [70]
    MARSZALEK M, LAPTEV I, and SCHMID C. Actions in context[C]. 2019 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 2391–2396. doi: 10.1109/CVPR.2009.5206557.
    [71]
    KUEHNE H, JUANG H, GARROTE E, et al. HMDB: A large video database for human motion recognition[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 2556-2563. doi:10.1007/978-3-642-33374-3_41 .
    [72]
    CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 7291–7299. doi: 10.1109/CVPR.2017.143.
    [73]
    SOOMRO K, ZAMIR A R, and SHAH M. UCF101: A dataset of 101 human actions classes from videos in the wild[J]. arXiv preprint arXiv: 1212.0402, 2012.
    [74]
    HAN Jungong, SHAO Ling, XU Dong, et al. Enhanced computer vision with microsoft kinect sensor: A review[J]. IEEE Transactions on Cybernetics, 2013, 43(5): 1318–1334. doi: 10.1109/TCYB.2013.2265378
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (2450) PDF downloads(457) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return