Advanced Search
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Ningning QIN, Chao WANG, Le YANG, Shunyuan SUN. Off Line Fingerprint Database Based on Multivariate Gaussian Mixture Model[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1772-1780. doi: 10.11999/JEIT200226
Citation: Ningning QIN, Chao WANG, Le YANG, Shunyuan SUN. Off Line Fingerprint Database Based on Multivariate Gaussian Mixture Model[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1772-1780. doi: 10.11999/JEIT200226

Off Line Fingerprint Database Based on Multivariate Gaussian Mixture Model

doi: 10.11999/JEIT200226
Funds:  The National Natural Science Foundation of China (61702228, 61803183), The Natural Science Foundation of Jiangsu Province (BK20170198, BK20180591), The Open Fund of Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space of Ministry of Industry and Information Technology(KF20202104)
  • Received Date: 2020-03-31
  • Rev Recd Date: 2020-08-24
  • Available Online: 2020-09-03
  • Publish Date: 2021-06-18
  • For the fluctuation of single sampling measurement value and the mutual interference between signals in indoor environment, this paper proposes an indoor positioning system based on the partition MultiVariate Gaussian Mixture Model(MVGMM). According to the Access Point (AP) position and indoor spatial structure, the system uses SVM classification in “one-against-all” form to partition the target area in order to predict the subarea with signal changes. A MVGMM based on the mutual interference between signals is established by using the coupling relationship between multiple communication devices in the partition. It is important to improve the positioning accuracy which is affected by signal fluctuation. When the indoor environment changes, the adaptive updating algorithm based on the partition MVGMM can test the reliability of fingerprint data in each segmentation. Moreover, it can update the model parameters in the partition with large signal fluctuation by the adaptive algorithm to strengthen the coupling relationship between the model and the existing environment. Experimental result demonstrates that the proposed algorithm can build a stable and maintainable indoor signal distribution model by using a relatively small number of sample data. Its positioning accuracy is also improved to a certain extent compared to other algorithms.
  • loading
  • [1]
    WANG Chun, LUO Juan, and ZHENG Yanliu. Optimal target tracking based on dynamic fingerprint in indoor wireless network[J]. IEEE Access, 2018, 6: 77226–77239. doi: 10.1109/ACCESS.2018.2880247
    [2]
    江小平, 王妙羽, 丁昊, 等. 基于信道状态信息幅值-相位的被动式室内指纹定位[J]. 电子与信息学报, 2020, 42(5): 1165–1171. doi: 10.11999/JEIT180871

    JIANG Xiaoping, WANG Miaoyu, DING Hao, et al. Passive fingerprint indoor positioning based on CSI amplitude-phase[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1165–1171. doi: 10.11999/JEIT180871
    [3]
    左燕, 陈志猛, 蔡立平. 基于约束总体最小二乘的单站DOA/TDOA联合误差校正与定位算法[J]. 电子与信息学报, 2019, 41(6): 1317–1323. doi: 10.11999/JEIT180655

    ZUO Yan, CHEN Zhimeng, and CAI Liping. Single-observer DOA/TDOA registration and passive localization based on constrained total least squares[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1317–1323. doi: 10.11999/JEIT180655
    [4]
    PATWARI N, HERO A O, PERKINS M, et al. Relative location estimation in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2003, 51(8): 2137–2148. doi: 10.1109/TSP.2003.814469
    [5]
    李世宝, 王升志, 刘建航, 等. 基于接收信号强度非齐性分布特征的半监督学习室内定位指纹库构建[J]. 电子与信息学报, 2019, 41(10): 2302–2309. doi: 10.11999/JEIT180599

    LI Shibao, WANG Shengzhi, LIU Jianhang, et al. Semi-supervised indoor fingerprint database construction method based on the nonhomogeneous distribution characteristic of received signal strength[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2302–2309. doi: 10.11999/JEIT180599
    [6]
    刘坤, 吴建新, 甄杰, 等. 基于阵列天线和稀疏贝叶斯学习的室内定位方法[J]. 电子与信息学报, 2020, 42(5): 1158–1164. doi: 10.11999/JEIT190314

    LIU Kun, WU Jianxin, ZHEN Jie, et al. Indoor localization algorithm based on array antenna and sparse Bayesian learning[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1158–1164. doi: 10.11999/JEIT190314
    [7]
    ACHUTEGUI K, MÍGUEZ J, RODAS J, et al. A multi-model sequential Monte Carlo methodology for indoor tracking: Algorithms and experimental results[J]. Signal Processing, 2012, 92(11): 2594–2613. doi: 10.1016/j.sigpro.2012.03.017
    [8]
    KHALAJMEHRABADI A, GATSIS N, and AKOPIAN D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974–2002. doi: 10.1109/COMST.2017.2671454
    [9]
    CHEN Lina, LI Binghao, ZHAO Kai, et al. An improved algorithm to generate a Wi-Fi fingerprint database for indoor positioning[J]. Sensors, 2013, 13(8): 11085–11096. doi: 10.3390/s130811085
    [10]
    HONKAVIRTA V, PERALA T, ALI-LOYTTY S, et al. A comparative survey of WLAN location fingerprinting methods[C]. The 6th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 2009: 243–251. doi: 10.1109/WPNC.2009.4907834.
    [11]
    ZHANG Tianyu, ZHAO Qian, SHIN K, et al. Bayesian-optimization-based peak searching algorithm for clustering in wireless sensor networks[J]. Journal of Sensor and Actuator Networks, 2018, 7(1): 2. doi: 10.3390/jsan7010002
    [12]
    ZHAO Yuxin, FRITSCHE C, YIN Feng, et al. Sequential Monte Carlo methods and theoretical bounds for proximity report based indoor positioning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5372–5386. doi: 10.1109/TVT.2018.2799174
    [13]
    ZHAO Yuxin, LIU Chao, MIHAYLOVA L S, et al. Gaussian processes for RSS fingerprints construction in indoor localization[C]. The 21st International Conference on Information Fusion, Cambridge, UK, 2018: 1377–1384. doi: 10.23919/ICIF.2018.8455842.
    [14]
    HE Suining, TAN Jiajie, and CHAN S H G. Towards area classification for large-scale fingerprint-based system[C]. 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016: 232–243. doi: 10.1145/2971648.2971689.
    [15]
    傅惠民, 杨海峰, 张勇波, 等. 基于空间特征分区和前点约束的WKNN室内定位方法[J]. 软件学报, 2019, 30(11): 3427–3439. doi: 10.13328/j.cnki.jos.005569

    FU Huimin, YANG Haifeng, ZHANG Yongbo, et al. WKNN indoor positioning algorithm based on spatial characteristics partition and former location restriction[J]. Journal of Software, 2019, 30(11): 3427–3439. doi: 10.13328/j.cnki.jos.005569
    [16]
    LI Yan, WILLIAMS S, MORAN B, et al. High-dimensional probabilistic fingerprinting in wireless sensor networks based on a multivariate Gaussian mixture model[J]. Sensors, 2018, 18(8): 2602. doi: 10.3390/s18082602
    [17]
    RAITOHARJU M, GARCÍA-FERNÁNDEZ Á F, HOSTETTLER R, et al. Gaussian mixture models for signal mapping and positioning[J]. Signal Processing, 2020, 168: 107330. doi: 10.1016/j.sigpro.2019.107330
    [18]
    REYNOLDS D A, QUATIERI T F, and DUNN R B. Speaker verification using adapted Gaussian mixture models[J]. Digital Signal Processing, 2000, 10(1/3): 19–41. doi: 10.1006/dspr.1999.0361
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1034) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return